2021-2022学年度北师大版八年级数学下册第四章因式分解定向测评试卷(无超纲带解析).docx
-
资源ID:32551794
资源大小:225.96KB
全文页数:16页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年度北师大版八年级数学下册第四章因式分解定向测评试卷(无超纲带解析).docx
北师大版八年级数学下册第四章因式分解定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列多项式中能用平方差公式分解因式的是( )ABCD2、若一个三角形的三边长为a,b,c,且满足a22abb2acbc 0,则这个三角形是( )A直角三角形B等边三角形C等腰三角形D等腰直角三角形3、下列式子从左到右的变形中,属于因式分解的是( )ABCD4、下列因式分解正确的是( )ABCD5、下列等式中,从左往右的变形为因式分解的是()Aa2a1a(a1)B(ab)(a+b)a2b2Cm2m1m(m1)1Dm(ab)+n(ba)(mn)(ab)6、运用平方差公式对整式进行因式分解时,公式中的可以是( )ABCD7、下列等式中,从左到右的变形是因式分解的是( )Aa(a-3)=a2-3aB(a+3)2=a2+6a+9C6a2+1=a2(6+)Da2-9=(a+3)(a-3)8、下列各式能用公式法因式分解的是( )ABCD9、下列因式分解正确的是( )ABCD10、下列从左到右的变形,是因式分解的是( )A(x4)(x4)x216Bx2x6(x3)(x2)Cx21x(x)Da2bab2ab(ab)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、(_)(_);(_)(_);(_)(_);(_)(_);(_)(_);(_)(_)2、因式分解:_3、分解因式:_4、计算下列各题:(1)_; (2)_; (3)_; (4)_5、分解因式:_三、解答题(5小题,每小题10分,共计50分)1、探究:如何把多项式x2+8x+15因式分解? (1)观察:上式能否可直接利用完全平方公式进行因式分解? 答:_; (2)(阅读与理解):由多项式乘法,我们知道(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左地使用,即可对形如x2+(a+b)x+ab的多项式进行因式分解,即:x2+(a+b)x+ab=(x+a)(x+b)此类多项式x2+(a+b)x+ab的特征是二次项系数为1,常数项为两数之积,一次项系数为这两数之和猜想并填空:x2+8x+15=x2+(_)+(_)x+(_)×(_)=(x+_)(x+_)(3)上面多项式x2+8x+15的因式分解是否符合题意,我们需要验证请写出验证过程(4)请运用上述方法将下列多项式进行因式分解:x2-x-122、(1)运用乘法公式计算:;(2)分解因式:3、分解因式:x3y6x2y2+9xy34、因式分解:(1)(2)(3)5、分解因式:(1);(2)-参考答案-一、单选题1、A【分析】利用平方差公式逐项进行判断,即可求解【详解】解:A、,能用平方差公式分解因式,故本选项符合题意;B、 ,不能用平方差公式分解因式,故本选项不符合题意 ;C、 ,不能用平方差公式分解因式,故本选项不符合题意 ;D、 ,不能用平方差公式分解因式,故本选项不符合题意 ;故选:A【点睛】本题主要考查了用平方差公式因式分解,熟练掌握平方差公式 是解题的关键2、C【分析】先用完全平方公式和提取公因式法把等式左边因式分解,得出a,b,c之间的关系判断即可【详解】解:a22abb2acbc 0,即,故选:C【点睛】本题考查了因式分解的应用,解题关键是熟练运用分组分解法把等式左边因式分解,得出三角形边之间的等量关系3、B【分析】把一个多项式化为几个整式的积的形式叫把这个多项式分解因式,根据定义逐一判断即可.【详解】解:是整式的乘法,故A不符合题意;是因式分解,故B符合题意;右边不是整式的积的形式,不是因式分解,故C不符合题意;右边不是整式的积的形式,不是因式分解,故D不符合题意;故选B【点睛】本题考查的是因式分解的定义,掌握“根据因式分解的定义判断变形是否是因式分解”是解本题的关键.4、C【分析】根据完全平方公式和平方差公式以及提公因式法分解因式对各选项分析判断后利用排除法求解【详解】解:A、,故本选项错误;B、,故本选项错误;C、,故本选项正确;D、,故本选项错误故选:C【点睛】本题考查了公式法分解因式,提公因式法分解因式,熟记公式结构是解题的关键,分解因式要彻底5、D【分析】把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可【详解】A. a2a1a(a1)从左往右的变形是乘积形式,但(a1)不是整式,故选项A不是因式分解;B. (ab)(a+b)a2b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;C. m2m1m(m1)1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;D.根据因式分解的定义可知 m(ab)+n(ba)(mn)(ab)是因式分解,故选项D从左往右的变形是因式分解故选D【点睛】本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键6、C【分析】运用平方差公式分解因式,后确定a值即可【详解】=,a是2mn,故选C【点睛】本题考查了平方差公式因式分解,熟练掌握平方差公式是解题的关键7、D【分析】根据分解因式的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式;进行作答即可【详解】解:A、a(a-3)=a2-3a,属于整式乘法,不符合题意;B、(a+3)2=a2+6a+9,属于整式乘法,不符合题意;C、6a2+1=a2(6+)不是因式分解,不符合题意;D、a2-9=(a+3)(a3)属于因式分解,符合题意;故选:D【点睛】本题考查了因式分解的意义,属于基础题,解答本题的关键是熟练掌握因式分解的定义与形式8、A【分析】利用完全平方公式和平方差公式对各个选项进行判断即可【详解】解:A、,故本选项正确;B、x2+2xy-y2 一、三项不符合完全平方公式,不能用公式法进行因式分解,故本选项错误;C、x2+xy-y2中间乘积项不是两底数积的2倍,不能用公式法进行因式分解,故本选项错误;D、-x2-y2不符合平方差公式,不能用公式法进行因式分解,故本选项错误故选:A【点睛】本题考查了公式法分解因式,能用完全平方公式进行因式分解的式子的特点是:两项平方项的符号相同,另一项是两底数积的2倍,熟记公式结构是求解的关键9、C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义和方法即可求解【详解】解:A、,错误,故该选项不符合题意;B、,错误,故该选项不符合题意;C、,正确,故该选项符合题意;D、,不能进行因式分解,故该选项不符合题意;故选:C【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键10、D【分析】分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可【详解】A、结果不是积的形式,因而不是因式分解;B、,因式分解错误,故错误;C、 不是整式,因而不是因式分解;D、满足因式分解的定义且因式分解正确;故选:D【点睛】题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键二、填空题1、;【分析】利用十字相乘法进行因式分解即可得【详解】解:;故答案为:;【点睛】本题考查了利用十字相乘法进行因式分解,熟练掌握十字相乘法是解题关键二次三项式,若存在 ,则2、【分析】先把原式化为 再利用平方差公式分解因式,再把其中一个因式按照平方差公式继续分解,从而可得答案.【详解】解:原式,故答案为:【点睛】本题考查的是利用平方差公式分解因式,注意分解因式一定要分解到每个因式都不能再分解为止.3、m(m+1)(m-1)【分析】先提公因式,再用平方差公式法分解因式【详解】故答案为m(m+1)(m-1)【点睛】本题考查了提公因式法和公式法分解因式,因式分解的步骤一般是:先考虑提公因式法,再考虑公式法,最后保证再也不能分解了4、 【分析】(1)根据同底数幂相乘运算法则计算即可;(2)根据积的乘方的运算法则计算即可;(3)根据幂的乘方的运算法则计算即可;(3)根据提取公因式法因式分解即可【详解】解:(1); (2); (3); (4)故答案是:(1);(2);(3);(4)【点睛】本题主要考查了同底数幂相乘、幂的乘方、积的乘方以及运用提取公因式法分解因式等知识点,灵活运用相关运算法则成为解答本题的关键5、【分析】用提公因式法即可分解因式【详解】故答案为:【点睛】本题考查了提公因式法分解因式,因式分解的步骤一般是先考虑提公因式,其次考虑公式法另外因式分解要进行到再也不能分解为止三、解答题1、(1)不能;(2)3;5;3;5;3;5;(3)x2+8x+15;(4)(x-4)(x+3)【分析】(1)根据完全平方公式的结构特征进行判断即可;(2)将x2+8x+15=x2+(3+5)x+(3×5)即可得出答案;(3)根据整式乘法计算(x+3)(x+5)的结果即可;(4)将x2+3+(-4)x+3×(-4)即可得出答案【详解】解:(1)因为x2+8x+16=(x+4)2,所以x2+8x+15不是完全平方公式,故答案为:不能;(2)x2+8x+15=x2+(3+5)x+(3×5)x2+8x+15=x2+(3+5)x+(3×5)=(x+3)(x+5),故答案为:3,5,3,5,3,5;(3)(x+3)(x+5)=x2+5x+3x+15=x2+8x+15,x2+8x+15=(x+3)(x+5)因此多项式x2+8x+15的因式分解是符合题意的;(4)x2-x-12=x2+3+(-4)x+3×(-4)=(x+3)(x-4)【点睛】本题考查了十字相乘法分解因式,掌握x2+(a+b)x+ab=(x+a)(x+b)的结构特征是正确应用的前提2、(1);(2)【分析】(1)把(3y-2)看作一个整体,然后利用平方差公式及完全平方公式进行求解即可;(2)先部分提公因式,然后再利用完全平方公式进行因式分解即可【详解】解:(1)=;(2)=【点睛】本题主要考查整式的混合运算及因式分解,熟练掌握乘法公式是解题的关键3、【分析】先提取公因式xy,再根据完全平方公式分解因式【详解】解: = 【点睛】考查了因式分解-运用公式法,要注意公式的综合应用,分解到每一个因式都不能再分解为止4、(1)2a(a2+3b);(2)5(x+y)(xy);(3)3(xy)2【分析】(1)直接提公因式2a即可;(2)先提公因式,再利用平方差公式即可;(3)先提公因式,再利用完全平方公式即可(1)解:2a(a2+3b);(2)解:(2)原式5(x2y2)5(x+y)(xy);(3)解:(3)原式3(x22xy+y2)3(xy)2【点睛】本题考查提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是正确应用的前提5、(1);(2)【分析】(1)提取m,后用完全平方公式分解;(2)提取a-b,后用平方差公式分解【详解】解:(1)原式(2)原式【点睛】本题考查了因式分解,熟练掌握先提后用公式的分解顺序是解题的关键