2022年人教版九年级数学下册第二十六章-反比例函数同步练习练习题(名师精选).docx
-
资源ID:32552029
资源大小:669.18KB
全文页数:26页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年人教版九年级数学下册第二十六章-反比例函数同步练习练习题(名师精选).docx
人教版九年级数学下册第二十六章-反比例函数同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,已知点P(a,0)(a0),过点P作x轴的垂线,分别交直线y=-x+1和反比例函数的图象于点M,N,若线段MN的长随a的增大而增大,则a的取值范围为( )A-1<a<2B0<a<2Ca>2或a<-1D-1<a<0或a>22、如图,反比例函数和正比例函数y2k2x的图象交于A(1,3)、B(1,3)两点,则满足不等式k2x的解集是()A1x0B1x1Cx1或0x1D1x0或0x3、若反比例函数的图象经过点,则这个函数的图象一定经过点( )ABCD4、若A(a1,b1),B(a2,b2)是反比例函数y图像上的两个点,且a1a20,则b1与b2的大小关系是()Ab1b2Bb1b2Cb1b2D大小不确定5、已知函数ykx(k0)中y随x的增大而增大,那么它和函数在同一直角坐标平面内的大致图象可能是()ABCD6、下列数表中分别给出了变量与的几组对应值,其中是反比例函数关系的是( )Ax1234y78910Bx1234y36912Cx1234y10.50.25Dx1234y43217、反比例函数的图象在( )A第一象限B第二象限C第一、三象限D第二、四象限8、如图,反比例函数y(x0)与一次函数yx4的图象交于A、B两点的横坐标分别为3,1则关于x的不等式x4(x0)的解集为()Ax3B3x1C1x0Dx3或1x09、若反比例函数y的图象在其所在的每一象限内,y随x的增大而减小,则k的取值范围是( )Ak2Bk2Ck2Dk210、反比例函数经过点(2,1),则下列说法错误的是()A点(1,2)在函数图象上B函数图象分布在第一、三象限Cy随x的增大而减小D当y4时,0x第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知反比例函数,则m=_,函数的表达式是_2、观察反比例函数的图象,当时,x的取值范围是_3、如图,正比例函数的图象交反比例函数的图象于、两点,轴,轴,则的面积为_4、反比例函数的图像如图所示,则k的值可能是_5、设直线ykx(k0)与双曲线y相交于A(x1,y1)、B(x2,y2)两点,则x1y23x2y1的值为_三、解答题(5小题,每小题10分,共计50分)1、已知上有点P,以P为圆心,长为半径画图,分别交x轴,y轴于A,B两点(1)三角形的面积是否为定值?若为,求出;若不为,说明理由(2)与交于M,N两点,且,求的面积(3)若定点到P的最小距离为,求所有满足条件的a的值2、如图,若反比例函数y1与一次函数y2axb的图象交于A(2,y1)、B(1,y2)两点,则不等式axb的解集为_3、已知近视眼镜的度数y(度)与镜片焦距x(米)成反比例关系,且400度近视眼镜镜片的焦距为0.25米小慧原来戴400度的近视眼镜,经过一段时间的矫正治疗后,现在只需戴镜片焦距为0.4米的眼镜了,求小慧所戴眼镜的度数降低了多少度4、如图,一次函数yax+b的图象与反比例数y的图象交于A(2,2),B(m,)两点(1)求反比例函数与一次函数的关系式;(2)C为y轴负半轴上一动点作CDAB交x轴交于点D,交反比例函数的图象于点E、当D为CE的中点时,求点C的坐标5、如图,中,点,点,反比例函数的图象经过点(1)求反比例函数的解析式;(2)将直线向上平移个单位后经过反比例函数的图象上的点,分别求与的值-参考答案-一、单选题1、D【分析】根据题意作出图像,分别求得的坐标,分第二象限和第四象限分别讨论【详解】解:如图,设直线y=-x+1和反比例函数的图象交于点, 根据题意, 解得 P(a,0),根据题图像可知,当-1<a<0或a>2,线段MN的长随a的增大而增大,故选D【点睛】本题考查了反比例函数与一次函数图像交点问题,数形结合是解题的关键2、C【分析】所求不等式的解集即为反比例函数值大于一次函数值时的范围,根据一次函数与反比例函数的交点坐标,即可确定出的范围【详解】解:根据反比例函数和正比例函数的图象交于、两点,利用图象:得:时的取值范围是:或故选:C【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是利用了数形结合的思想求解3、C【分析】先根据反比例函数的图象经过点,求出反比例函数解析式,由此求解即可【详解】解:反比例函数的图象经过点,反比例函数解析式为、,函数图象不过此点,故本选项错误;、,函数图象不经过此点,故本选项错误;、,函数图象经过此点,故本选项正确;、,函数图象不过此点,故本选项错误故选【点睛】本题主要考查了求反比例函数解析式,反比例函数图像上点的坐标特征,熟知反比例函数的相关知识是解题的关键4、C【分析】由得反比例函数过二四象限,在每个象限内y随x的增大而增大,即可得出答案【详解】,反比例函数过二四象限,在每个象限内y随x的增大而增大,故选:C【点睛】本题考查反比例函数的性质,掌握反比例函数的增减性是解题的关键5、D【分析】首先由“ykx(k0)中y随x的增大而增大”判定k0,然后根据k的符号来判断函数所在的象限【详解】解:函数ykx(k0)中y随x的增大而增大,k0,该函数图象经过第一、三象限;函数的图象经过第一、三象限;故选:D【点睛】本题考查反比例函数与一次函数的图象特点:反比例函数的图象是双曲线;当k0时,它的两个分支分别位于第一、三象限;当k0时,它的两个分支分别位于第二、四象限6、C【分析】由题意根据反比例函数的自变量与相应函数值的乘积是常数,可得答案【详解】解:C中,其余的都不具有这种关系C是反比例函数关系,故C正确;故选:C【点睛】本题考查反比例函数,注意掌握反比例函数的自变量与相应函数值的乘积是常数7、D【分析】对于的图象,当时,函数的图象在二,四象限,当时,函数的图象在一,三象限,根据知识点直接作答即可.【详解】解:由中 所以的图象在第二,第四象限,故选D【点睛】本题考查的是反比例函数的图象的分布,掌握“的图象,当时,函数的图象在二,四象限”是解本题的关键.8、B【分析】关于x的不等式x4(x0)成立,则当x0时,一次函数的图象在反比例函数图象的上方,再结合函数图象可得答案.【详解】解:反比例函数y(x0)与一次函数yx4的图象交于A、B两点的横坐标分别为3,1关于x的不等式x4(x0)成立,则当x0时,一次函数的图象在反比例函数图象的上方,观察图象可知,当3x1时,满足条件,关于x的不等式x4(x0)的解集为:3x1故选B【点睛】本题考查了反比例函数与一次函数的交点问题,函数的图象的应用,主要考查学生观察图象的能力,用了数形结合思想9、B【分析】根据反比例函数的图像在不同象限的增减性,判断出的正负,进而求出k的取值范围【详解】解: y的图象在其所在的每一象限内,y随x的增大而减小,解得:,故选:B【点睛】本题主要是考查了反比例函数的图像与性质,熟练掌握值的正负与函数在其所在象限的增减性的关系,是求解该题的关键10、C【分析】利用待定系数法求得k的值,再利用反比例函数图象的性质对每个选项进行逐一判断即可【详解】解:反比例函数经过点(2,1),k21×(2)2,故A正确;k20,双曲线y分布在第一、三象限,故B选项正确;当k20时,反比例函数y在每一个象限内y随x的增大而减小,故C选项错误,当y4时,0x,D选项正确,综上,说法错误的是C,故选:C【点睛】本题考查了反比例函数图象上点的坐标的特征,待定系数法确定函数的解析式,反比例函数图象的性质利用待定系数法求得k的值是解题的关键二、填空题1、 1 y【解析】【分析】根据反比例函数的定义即y(k0),只需令m221、m10即可【详解】解:依题意有m221且(m1)0,所以m1函数的表达式是y故答案为:1,y【点睛】本题考查了反比例函数的定义,重点是将一般式(k0)转化为ykx1(k0)的形式2、x1或x0#x0或x-1【解析】【分析】利用函数值找到分界点(-1,-2),根据反比例函数的图象和性质与直线y=-2的位置关系解答即可【详解】解:k20,反比例函数图像位于一三象限,在每个象限内y随x的增大而减小,y=-2时,解得x=-1,当y-2时x1或x0,故答案为x1或x0【点睛】本题重点考察学生对反比例函数图像和性质的理解,掌握反比例函数的图象和性质,以及利用反比例函数与直线y=-2的交点求不等式解集是解题的关键3、8【解析】【分析】由反比例函数性质可知,由轴,轴可知为直角三角形,面积可表示为,其中,故有【详解】由题意可知,轴,轴ACB=90°,故答案为:8【点睛】本题考查了反比例函数k的图象意义,双曲线上任意一点作轴、轴的垂线,所得的矩形的面积为;过双曲线上任一点作垂直于轴,连接,所得的三角形的面积为4、-2(答案不唯一)【解析】【分析】利用反比例函数的性质得到k0,然后在此范围内取一个值即可【详解】解:双曲线的一支分别位于第二象限,k0,k可取-2故答案为-2(答案不唯一)【点睛】本题考查了反比例函数的性质:反比例函数y=(k0)的图象是双曲线;当k0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大5、-10【解析】【分析】首先根据正比例函数和反比例函数的性质得到A、两点关于原点对称,然后将A(x1,y1)代入双曲线y得到,最后代入x1y23x2y1计算即可【详解】解:直线ykx与双曲线y交于A(x1,y1)、B(x2,y2)两点,A、两点关于原点对称,把A(x1,y1)代入双曲线y得到,故答案是:-10【点睛】此题考查了正比例函数和反比例函数的性质,解题的关键是熟练掌握正比例函数和反比例函数的性质三、解答题1、(1)为,8;(2)10;(3)-1或【分析】(1)连接AB,可得AB为圆P直径,设A(2a,0),B(0,2b),可得P(a,b),由三角形面积公式可得结论;(2)根据y=-2x+4求出GO=4,QO=2,根据勾股定理求出,由垂径定理得OPGQ,根据等积关系计算出OE,EF,EH,从而得出点E坐标(),进一步求出直线OP的解析式,设P()代入求得x的值,从而求出OP,根据圆的面积公式求解即可;(3)设,求出,令,则,把化简为,然后分两种情况讨论求解即可【详解】解:如图,连接AB, AB为圆P直径,即AB的中点为点P,设A(2a,0),B(0,2b),即点P在上 即的面积为定值8;(2)设直线y=-2x+4与x轴交于点Q,与y轴交于点G,与OP交于点E,过点E作EFy轴,EHx轴,垂足分别为F,H,如图,M,N在圆P上,且OM=ONOPMN对于y=-2x+4,令x=0,则y=4;令y=0,则x=2OG=4,OQ=2由勾股定理得, 又 又, 同理可得, 设直线OP的解析式为y=kx,则 直线OP的解析式为 设P(x,),则有 解得,或(舍去) 的面积为: (3)设,=令,则,当时,时PQ最小,则有:解得,或(舍去)当,时PQ最小,则有:解得,(舍去)或综上,a的值为:-1或【点睛】本题主要考查了坐标与图形,圆的性质,垂径定理,用待定系数法求一次函数解析,反比例函数,勾股定理以及不等式的性质等知识,得到以及灵活运用分类讨论思想解题是关键2、或【分析】根据不等式的解集即为一次函数图像在反比例函数图像上方时自变量的取值范围,进行求解即可【详解】解:由函数图像可知不等式的解集即为一次函数图像在反比例函数图像上方时自变量的取值范围,不等式的解集为或,故答案为:或【点睛】本题主要考查了利用反比例函数与一次函数的交点解不等式,解题的关键在于能够根据题意得到不等式的解集即为一次函数图像在反比例函数图像上方时自变量的取值范围3、150【分析】设出反比例函数解析式,把代入求得反比例函数解析式,再直接利用x=0.4代入求出答案【详解】由已知设y与x的函数关系式为:,把代入,得,解得:,故y与x之间的函数关系式为:,当时,有,小慧所戴眼镜的度数降低了150度【点睛】本题主要考查了反比例函数的应用,用待定系数法正确求出函数解析式是解题关键4、(1);(2)【分析】(1)把点A代入反比例函数解析式,求出k,再把点B代入反比例函数解析式求出m,再把A,B代入一次函数解析式求解即可;(2)根据两直线平行的特点设出CD的解析式,表示出点C的坐标,再计算出点E的坐标即可;【详解】(1)反比例数y的图象过点A(2,2),反比例函数的解析式为,反比例函数过点B(m,),把A,B代入一次函数解析式得:,一次函数解析式为;(2)CDAB,设直线CD的解析式为,令,则,D为CE的中点,E的纵坐标为n,代入,求得,反比例函数过点E,(负数舍去),【点睛】本题主要考查了反比例函数与一次函数的解析式求解和图象性质,准确计算是解题的关键5、(1);(2),【分析】(1)过点A作轴于D,可证,得出A点坐标,待定系数法求出解析式即可;(2)将点代入(1)中解析式和直线平移后的直线解析式中,分别求出,的值即可【详解】解:(1)如图,过点A作轴于D,则,又,BOC=CDA=90°,点C的坐标为(2,0),点B的坐标为(0,4),OD=OC+CD=6,点A的坐标为(6,2),把A点坐标代入到反比例函数中,得,反比例函数解析式为;(2)在上,设直线OA解析式为,直线OA解析式为直线向上平移个单位后的解析式为:,直线图象经过(3,4)解得:,【点睛】本题考查了待定系数法求反比例函数解析式,正比例函数解析式,函数图像的平移,三角形全等的性质与判定,解题的关键是掌握一次函数与反比例函数的相关性质和数形结合思想