中考特训浙教版初中数学七年级下册第五章分式专题测评试卷.docx
-
资源ID:32552339
资源大小:318.80KB
全文页数:15页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
中考特训浙教版初中数学七年级下册第五章分式专题测评试卷.docx
初中数学七年级下册第五章分式专题测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、已知实数满足,则下列结论:若,则;若,则;若,则;若,则,其中正确的个数是( )A1B2C3D42、下列分式中,把x,y的值同时扩大2倍后,值不变的是()ABCD3、计算的结果为( )A1BCD4、如果分式的值为0,那么x的值为( )A0B1CD5、已知1纳米,那么用科学记数法表示为( )ABCD6、若,则可用含和的式子表示为( )ABCD7、年月日时分,我国成功发射了北斗系统第颗导航星,其授时精度为世界之最,不超过秒数据用科学记数法表示为()ABCD8、下列各式计算正确的是()ABC D9、一种花瓣的花粉颗粒直径约为0.00000065米,0.00000065用科学记数法表示为()A6.5×105B6.5×106C6.5×107D65×10610、新型冠状病毒属冠状病毒属,冠状病毒科,体积很小,最大直径不超过140纳米(即0.00000014米)用科学记数法表示0.00000014,正确的是()A1.4×107B1.4×107C0.14×106D14×108二、填空题(5小题,每小题4分,共计20分)1、化简(x11)1的结果是 _2、若,则的值是_3、已知a、b为实数,且,设,则M、N的大小关系是M_ N(填=、>、<、)4、计算:_5、当x_时,分式的值为零三、解答题(5小题,每小题10分,共计50分)1、计算:2、解方程:3、计算:(1)()2+(3.14)0(2)(a1)2a(a+2)4、某校为了准备“迎新活动”,用900元购买了甲、乙两种礼品共240个,其中购买甲种礼品比乙种礼品少用了180元(1)购买甲种礼品一共用去_元;(请直接写出答案)(2)如果甲种礼品的单价是乙种礼品单价的2倍,那么乙种礼品的单价是多少元?5、探索发现:1;根据你发现的规律,回答下列问题:(1) , ;(2)利用你发现的规律计算:-参考答案-一、单选题1、D【分析】转化为,即可求解;先求出,再求出,即可得到答案;将变形求出值为1,再将变形求出值也为1,即可得到答案;将进行变形为,再将整体代入,即可得到答案【详解】解:因为,所以,故此项正确;因为,则所以,解得:;所以,所以,故此项正确;因为,所以,;所以,故此项正确;因为,所以,故此项正确;故选D【点睛】本题考查完全平方公式、分式的加法以及整体代入方法,解答本题的关键是明确题意,求出学会整体代入2、C【分析】把,的值同时扩大2倍后,运用分式的基本性质进行化简,即可得出结论【详解】解:A选项,把,的值同时扩大2倍后得:,值发生了变化,故该选项不符合题意;B选项,把,的值同时扩大2倍后得:,值缩小了一半,故该选项不符合题意;C选项,把,的值同时扩大2倍后得:,值不变,故该选项符合题意;D选项,把,的值同时扩大2倍后得:,值变成了原来的2倍,故该选项不符合题意;故选:C【点睛】本题考查了分式的基本性质,掌握分式的基本性质是解题的关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变3、B【分析】先把分母2a变形为(a2),即通分,再按分式的加减运算法则计算即可【详解】解:原式=;故选:B【点睛】此题考查的是分式的加减运算,化为同分母进行计算是解决此题关键4、B【分析】分式的值为0,可知分母不为0,分子为0,由此可得到最终结果【详解】分式的值为0,解得,又,故选:B【点睛】本题考查了分母的值为0的条件,属于基础题,解题的关键是明白分母不为0,分子为05、C【分析】科学记数法的表现形式为的形式,其中,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案【详解】解: ,故选C【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义6、D【分析】先将转化为关于b的整式方程,然后用a、s表示出b即可【详解】解:,s1,故选:D【点睛】本题考查解分式方程,解答的关键是熟练掌握分式方程的一般步骤7、D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:,故选:D【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中,为由原数左边起第一个不为零的数字前面的0的个数所决定8、A【分析】根据各自的运算公式计算判断即可【详解】,A正确;,B不正确;,C不正确;,D不正确;故选A【点睛】本题考查了同底数幂的乘法,积的乘方,负整数指数幂,完全平方公式,熟练掌握各公式是解题的关键9、C【分析】科学记数法的表示形式为a×10n的形式,其中1|a|<10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数【详解】解:0.00000065的小数点向右移动7位得到6.5,所以数字0.00000065用科学记数法表示为6.5×107,故选C【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|<10,n为整数,表示时关键要正确确定a的值以及n的值10、B【分析】根据题意,运用科学计数法的表示方法可直接得出答案,要注意绝对值小于1的数字科学计数法的表示形式为:,其中,n为正整数,n的值由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.00000014用科学记数法表示为,故选:B【点睛】本题考查了科学计数法的表示方法,属于基础题,正确确定中和的值是解决本题的关键二、填空题1、且【分析】根据ap(a0,p为正整数)先计算x1,再计算括号里面的减法,然后再次计算()1即可【详解】解:原式(1)1()1故答案为:且【点睛】此题主要考查了负整数指数幂,关键是掌握负整数指数为正整数指数的倒数2、或或【分析】对进行分类讨论,、三种情况,分别求解即可【详解】解:当时,当时,当时,综上所述,的值为,故答案为或或【点睛】此题考查了绝对值的性质以及有理数的有关运算,解题的关键是对的范围进行分类讨论,分别求解3、=【分析】本题只需要先对M、N分别进行化简,再把代入即可比较M、N的大小【详解】解:,MN,故答案为:【点睛】本题考查了分式的混合运算,在解题时要注意先对分式进行化简,再代入求值即可4、【分析】根据负整指数幂,零次幂进行计算即可【详解】故答案为:1【点睛】本题考查了负整指数幂,零次幂,掌握负整指数幂,零次幂的计算是解题的关键5、= 3【分析】根据分母为0是分式无意义,分式值为零的条件是分子等于零且分母不等于零列式计算即可【详解】解:根据题意,分式的值为零,;故答案为:【点睛】本题考查的是分式为0的条件、分式有意义的条件,掌握分式值为零的条件是分子等于零且分母不等于零是解题的关键三、解答题1、4【分析】直接利用零指数幂的性质以及立方根的性质、负整数指数幂的性质、绝对值的性质分别化简得出答案【详解】解:=3+1+4÷2-4×=3+1+2-2=4【点睛】本题主要考查了零指数幂的性质以及立方根的性质、负整数指数幂的性质、绝对值的性质,正确化简各数是解题关键2、【分析】方程两边同乘(x3)把分式方程化简为整式方程,解整式方程,最后验根即可【详解】解:经检验:是原方程的解所以原方程的解为【点睛】本题考查了解分式方程,熟练解分式方程的步骤是解答此题的关键注意:单独数字也要乘以最简公因式3、(1)5;(2)4a+1【分析】(1)根据负指数幂和零次幂的运算法则进行计算即可得出答案;(2)根据完全平方公式及单项式乘以多项式法则进行计算,再合并同类项即可得出答案【详解】解:(1)原式;(2)原式【点睛】此题考查了负指数幂和零次幂的运算法则以及整式的乘法,涉及了完全平方公式的应用,熟练掌握相关基础知识是解题的关键4、(1)360;(2)3元【分析】(1)购买甲种礼品一共用去x元,则购买乙种礼品一共用去(180+x)元,然后根据一共花了900元,列出方程求解即可;(2)设乙种礼品单价是y元,则甲种礼品单价是2y元,然后根据用900元购买了甲、乙两种礼品共240个,列出方程求解即可【详解】解:(1)购买甲种礼品一共用去x元,则购买乙种礼品一共用去(180+x)元,由题意得:x+180+x=900,解得:x=360,购买甲种礼品一共用去360元,故答案为360;(2)设乙种礼品单价是y元,则甲种礼品单价是2y元,由题意得:,解得:y3,经检验,y3是原方程的根,并符合题意,答:乙种礼品的单价是3元【点睛】本题主要考查了一元一次方程的应用,分式方程的应用,解题的关键在于能够准确理解题意,列出方程求解5、(1),;(2)【分析】(1)观察已知等式,写出所求即可;(2)归纳总结得到一般性规律,写出即可;【详解】解:(1),(2)原式 , 【点睛】此题考查了有理数的混合运算,以及规律型:数字的变化类,弄清题中的规律是解本题的关键