欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年人教版八年级数学下册第十八章-平行四边形专项攻克试卷(含答案详细解析).docx

    • 资源ID:32552441       资源大小:569.42KB        全文页数:30页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年人教版八年级数学下册第十八章-平行四边形专项攻克试卷(含答案详细解析).docx

    人教版八年级数学下册第十八章-平行四边形专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、平行四边形OABC在平面直角坐标系中的位置如图所示,AOC45°,OAOC,则点B的坐标为()A(,1)B(1,)C(1,1)D(1,1)2、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是( )A梯形的下底是上底的两倍B梯形最大角是C梯形的腰与上底相等D梯形的底角是3、如图,在四边形中,面积为21,的垂直平分线分别交于点,若点和点分别是线段和边上的动点,则的最小值为( )A5B6C7D84、如图,在平面直角坐标系中,点A是x轴正半轴上的一个动点,点C是y轴正半轴上的点,于点C已知,点B到原点的最大距离为( )A22B18C14D105、如图,菱形OABC在平面直角坐标系中的位置如图所示,AOC45°,OA,则点C的坐标为()A(,1)B(1,1)C(1,)D(+1,1)6、如图,四边形ABCD是平行四边形,下列结论中错误的是( )A当ABCD是矩形时,ABC90°B当ABCD是菱形时,ACBDC当ABCD是正方形时,ACBDD当ABCD是菱形时,ABAC7、如图,已知四边形ABCD和四边形BCEF均为平行四边形,D60°,连接AF,并延长交BE于点P,若APBE,AB3,BC2,AF1,则BE的长为()A5B2C2D38、如图,矩形ABCD的对角线AC和BD相交于点O,若AOD120°,AC16,则AB的长为()A16B12C8D49、如图,DE是ABC的中位线,点F在DE上,且AFB90°,若AB5,BC8,则EF的长为( )A2.5B1.5C4D510、在ABCD中,添加以下哪个条件能判断其为菱形( )AABBCBBCCDCCDACDACBD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在矩形ABCD中,对角线AC,BD相交于点O,AB6,DAC60°,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:BDEEFC;EDEC;ADFECF;点E运动的路程是2,其中正确结论的序号为 _2、正方形的一条对角线长为4,则这个正方形面积是_3、点D、E分别是ABC边AB、AC的中点,已知BC12,则DE_4、如图,在矩形ABCD中,AD3AB,点G,H分别在AD,BC上,连BG,DH,且,当_时,四边形BHDG为菱形5、平面直角坐标系中,四边形ABCD的顶点坐标分别是A(3,0),B(0,2),C(3,0),D(0,2),则四边形ABCD是_三、解答题(5小题,每小题10分,共计50分)1、已知:在中,点、点、点分别是、的中点,连接、(1)如图1,若,求证:四边形为菱形;(2)如图2,过作交延长线于点,连接,在不添加任何辅助线的情况下,请直接写出图中所有与面积相等的平行四边形2、如图,在中,对角线AC、BD交于点O,AB=10,AD=8,ACBC,求(1)的面积;(2)AOD的周长3、(3)点P为AC上一动点,则PE+PF最小值为4、如图,YABCD的对角线AC 、 BD相交于点O ,BD=12cm ,AC=6cm ,点E在线段BO上从点B以1cm/s的速度向点O运动,点F在线段OD上从点O 以2cm /s 的速度向点D运动 (1)若点E 、F同时运动,设运动时间为t秒,当t 为何值时,四边形AECF是平行四边形(2)在(1)的条件下,当AB为何值时,YAECF是菱形;(3)求(2)中菱形AECF的面积5、如图,中,对角线AC、BD相交于点O,点 E, F,G,H分别是OA、OB、OC、OD的中点,顺次连接EFGH(1)求证:四边形EFGH 是平行四边形(2)若的周长为2(AB+BC)=32,则四边形EFGH的周长为_-参考答案-一、单选题1、C【解析】【分析】作,求得、的长度,即可求解【详解】解:作,如下图:则在平行四边形中,为等腰直角三角形则,解得故选:C【点睛】此题考查了平行四边形的性质,等腰直角三角形的性质以及勾股定理,解题的关键是灵活运用相关性质进行求解2、D【解析】【分析】如图(见解析),先根据平角的定义可得,再根据可求出,由此可判断选项;先根据等边三角形的判定与性质可得,再根据平行四边形的判定可得四边形是平行四边形,根据平行四边形的性质可得,然后根据菱形的判定可得四边形是菱形,根据菱形的性质可得,最后根据线段的和差、等量代换可得,由此可判断选项【详解】解:如图,梯形是等腰梯形, ,则梯形最大角是,选项B正确;没有指明哪个角是底角,梯形的底角是或,选项D错误;如图,连接,是等边三角形,点共线,四边形是平行四边形,四边形是菱形,选项A、C正确;故选:D【点睛】本题考查了等腰梯形、菱形的判定与性质、等边三角形的判定与性质等知识点,熟练掌握各判定与性质是解题关键3、C【解析】【分析】连接AQ,过点D作,根据垂直平分线的性质得到,再根据计算即可;【详解】连接AQ,过点D作,面积为21,MN垂直平分AB,当AQ的值最小时,的值最小,根据垂线段最短可知,当时,AQ的值最小,的值最小值为7;故选C【点睛】本题主要考查了四边形综合,垂直平分线的性质,准确分析计算是解题的关键4、B【解析】【分析】首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离【详解】解:取AC的中点E,连接BE,OE,OB,AOC90°,AC16,OECEAC8,BCAC,BC6,BE10,若点O,E,B不在一条直线上,则OBOE+BE18若点O,E,B在一条直线上,则OBOE+BE18,当O,E,B三点在一条直线上时,OB取得最大值,最大值为18故选:B【点睛】此题考查了直角三角形斜边上的中线的性质以及三角形三边关系此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用5、B【解析】【分析】作CDx轴,根据菱形的性质得到OC=OA=,在RtOCD中,根据勾股定理求出OD的值,即可得到C点的坐标【详解】:作CDx轴于点D,则CDO=90°,四边形OABC是菱形,OA=,OC=OA=,又AOC=45°,OCD=90°-AOC=90°-45°=45°,DOC=OCD,CD=OD,在RtOCD中,OC=,CD2+OD2=OC2,2OD2=OC2=2,OD2=1,OD=CD=1(负值舍去),则点C的坐标为(1,1),故选:B【点睛】此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD=CD=1是解决问题的关键6、D【解析】【分析】由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.【详解】解:当ABCD是矩形时,ABC90°,正确,故A不符合题意;当ABCD是菱形时,ACBD,正确,故B不符合题意;当ABCD是正方形时,ACBD,正确,故C不符合题意;当ABCD是菱形时,ABBC,故D符合题意;故选D【点睛】本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.7、D【解析】【分析】过点D作DHBC,交BC的延长线于点H,连接BD,DE,先证DHC=90º,再证四边形ADEF是平行四边形,最后利用勾股定理得出结果【详解】过点D作DHBC,交BC的延长线于点H,连接BD,DE,四边形ABCD是平行四边形,AB=3,ADC=60º,CD=AB=3,DCH=ABC=ADC=60º,DHBC, DHC=90º,ADC+CDH=90°,CDH=30°,在RtDCH中,CH=CD=,DH=,四边形BCEF是平行四边形,AD=BC=EF,ADEF,四边形ADEF是平行四边形,AFDE,AF=DE=1,AFBE,DEBE, ,故选D【点睛】本题考查了平行四边形的判定与性质,勾股定理,解题的关键是熟练运用这些性质解决问题8、C【解析】【分析】由题意可得AOBOCODO8,可证ABO是等边三角形,可得AB8【详解】解:四边形ABCD是矩形,AC2AO2CO,BD2BO2DO,ACBD16,OAOB8,AOD120°,AOB60°,AOB是等边三角形,ABAOBO8,故选:C【点睛】本题考查了矩形的性质,等边三角形的性质和判定,熟练掌握矩形的性质是本题的关键9、B【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得,再利用三角形中位线定理可得DE4,进而可得答案【详解】解:D为AB中点,AFB90°,AB5,DE是ABC的中位线,BC8,DE4,EF42.51.5,故选:B【点睛】此题主要考查了直角三角形的性质和三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半10、D【解析】【分析】根据对角线互相垂直的平行四边形是菱形,结合选项找到对角线互相垂直即可求解【详解】A、ABBC,ABC90°,又四边形ABCD是平行四边形,四边形ABCD是矩形;故选项A不符合题意;B、C选项,同A选项一样,均为邻边垂直,£ABCD是矩形;故选项B、C不符合题意;D、四边形ABCD是平行四边形,又ACBD,四边形ABCD是菱形;故选项D符合题意故选D【点睛】本题考查了菱形的判定,掌握菱形的判定定理是解题的关键二、填空题1、【解析】【分析】根据DAC60°,ODOA,得出OAD为等边三角形,再由DFE为等边三角形,得DOADEF60°,再利用角的等量代换,即可得出结论正确;连接OE,利用SAS证明DAFDOE,再证明ODEOCE,即可得出结论正确;通过等量代换即可得出结论正确;延长OE至,使OD,连接,通过DAFDOE,DOE60°,可分析得出点F在线段AO上从点A至点O运动时,点E从点O沿线段运动到,从而得出结论正确;【详解】解:设与的交点为如图所示:DAC60°,ODOA,OAD为等边三角形,DOADAOADO =60°,DFE为等边三角形,DEF60°,DOADEF60°,故结论正确;如图,连接OE,在DAF和DOE中,DAFDOE(SAS),DOEDAF60°,COD180°AOD120°,COECODDOE120°60°60°,COEDOE,在ODE和OCE中,ODEOCE(SAS),EDEC,OCEODE,故结论正确;ODEADF,ADFOCE,即ADFECF,故结论正确;如图,延长OE至,使OD,连接,DAFDOE,DOE60°,点F在线段AO上从点A至点O运动时,点E从点O沿线段运动到,设,则在中,即解得:ODAD,点E运动的路程是,故结论正确;故答案为:【点睛】本题主要考查了几何综合,其中涉及到了等边三角形判定及性质,相似三角形的判定及性质,全等三角形的性质及判定,三角函数的比值关系,矩形的性质等知识点,熟悉掌握几何图形的性质合理做出辅助线是解题的关键2、8【解析】【分析】正方形边长相等设为,对角线长已知,利用勾股定理求解边长的平方,即为正方形的面积【详解】解:设边长为,对角线为故答案为:【点睛】本题考察了正方形的性质以及勾股定理解题的关键在于求解正方形的边长3、6【解析】【分析】根据三角形的中位线等于第三边的一半进行计算即可【详解】解:D、E分别是ABC边AB、AC的中点,DE是ABC的中位线,BC=12,DE=BC=6,故答案为6【点睛】本题主要考查了三角形中位线定理,熟知三角形中位线定理是解题的关键4、【解析】【分析】设 则再利用矩形的性质建立方程求解 从而可得答案.【详解】解: 四边形BHDG为菱形, 设 AD3AB,设 则 矩形ABCD, 解得: 故答案为:【点睛】本题考查的是勾股定理的应用,矩形的性质,菱形的性质,利用图形的性质建立方程确定之间的关系是解本题的关键.5、菱形【解析】【分析】先在坐标系中画出四边形ABCD,由A、B、C、D的坐标即可得到OA=OC=3,OB=OD=2,再由ACBD,即可得到答案【详解】解:图象如图所示:A(-3,0)、B(0,2)、C(3,0)、D(0,-2),OA=OC=3,OB=OD=2,四边形ABCD为平行四边形,ACBD,四边形ABCD为菱形,故答案为:菱形【点睛】本题主要考查了菱形的判定,坐标与图形,解题的关键在于能够熟练掌握菱形的判定条件三、解答题1、(1)证明见详解;(2)与面积相等的平行四边形有、【分析】(1)根据三角形中位线定理可得:,依据平行四边形的判定定理可得四边形DECF为平行四边形,再由,可得,依据菱形的判定定理即可证明;(2)根据三角形中位线定理及平行四边形的判定定理可得四边形DEFB、DECF、ADFE是平行四边形,根据平行四边形的性质得出与各平行四边形面积之间的关系,再根据平行四边形的判定得出四边形EGCF是平行四边形,根据其性质得到,根据等底同高可得,据此即可得出与面积相等的平行四边形【详解】解:(1)D、E、F分别是AB、AC、BC的中点, 四边形DECF为平行四边形,四边形DECF为菱形;(2)D、E、F分别是AB、AC、BC的中点, ,且,四边形DEFB、DECF、ADFE是平行四边形,四边形EGCF是平行四边形,与面积相等的平行四边形有、【点睛】题目主要考查菱形及平行四边形的判定定理和性质,中位线的性质等,熟练掌握平行四边形及菱形的判定定理及性质是解题关键2、(1)48(2)【分析】(1)利用勾股定理先求出高AC,故可求解面积;(2)根据平行四边形的性质求出AO,再利用勾股定理求出OB的长,故可求解【详解】解:(1)四边形ABCD是平行四边形,且AD=8BC=AD=8ACBCACB=90°在RtABC中,由勾股定理得AC2=AB2-BC2(2)四边形ABCD是平行四边形,且AC=6ACB=90°,BC=8,【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及勾股定理的应用3、【分析】(1)根据折叠的性质可得:1=2,再由矩形的性质,可得2=3,从而得到1=3,即可求解;(2)设FD=x,则AF=CF=8-x,再由勾股定理,可得DF=3,从而得到CF=5,即可求解;(3)连接PB,根据折叠的性质可得ECPBCP,从而得到PE=PB,进而得到当点F、P、B三点共线时,PE+PF最小,最小值为BF的长,再由勾股定理,即可求解【详解】(1)解:ACF是等腰三角形,理由如下:如图,由折叠可知,1=2,四边形ABCD是矩形,ABCD,2=3,1=3,AF=CF,ACF是等腰三角形;(2)四边形ABCD是矩形且AB=8,BC=4,AD=BC=4,CD=AB=8,D=90°,设FD=x,则AF=CF=8-x,在RtAFD中,根据勾股定理得AD2+DF2=AF2,42+x2=(8-x)2,解得x=3 ,即DF=3,CF=8-3=5,;(3)如图,连接PB,根据折叠得:CE=CB,ECP=BCP,CP=CP,ECPBCP,PE=PB,PE+PF=PE+PB,当点F、P、B三点共线时,PE+PF最小,最小值为BF的长,由(2)知:CF=5,BC=4,BCF=90°, ,即PE+PF最小值为 【点睛】本题主要考查了矩形与折叠问题,等腰三角形的判定,熟练掌握矩形和折叠的性质是解题的关键4、(1)t2s;(2)AB=;(3)24【分析】(1)若是平行四边形,所以BD=12cm,则BO=DO=6cm,故有6-t=2t,即可求得t值;(2)若是菱形,则AC垂直于BD,即有,故AB可求;(3)根据四边形AECF是菱形,求得,根据平行四边形的性质得到BO=OD,求得BE=DF,列方程到底BE=DF=2,求得EF=8,于是得到结论【详解】解:(1)四边形ABCD为平行四边形,AOOC,EOOF,BOOD6cm,当t为2秒时,四边形AECF是平行四边形;(2)若四边形AECF是菱形,则,;当AB为时,平行四边形是菱形;(3)由(1)(2)可知当t2s,AB=时,四边形AECF是菱形,EO6t=4,EF=8,菱形AECF的面积【点睛】本题考查了平行四边形的判定和性质和菱形的判定和性质,勾股定理,菱形的面积的计算5、(1)见解析;(2)16【分析】(1)根据平行四边形的性质,可得OA=OC,OB=OD,从而得到OE=OG,OF=OH,即可求证;(2)根据三角形中位线定理,可得,从而得到 ,再由(1)四边形EFGH是平行四边形,即可求解【详解】(1)证明:四边形ABCD是平行四边形,OA=OC,OB=OD,点 E、 F、G、H分别是OA、OB、OC、OD的中点,OE=OG,OF=OH,四边形EFGH是平行四边形;(2)点 E、 F、G、H分别是OA、OB、OC、OD的中点, ,的周长为2(AB+BC)=32, , ,由(1)知:四边形EFGH是平行四边形,四边形EFGH的周长为 【点睛】本题主要考查了平行四边形的判定和性质,三角形的中位线定理,熟练掌握平行四边形的判定和性质定理,三角形的中位线定理是解题的关键

    注意事项

    本文(2022年人教版八年级数学下册第十八章-平行四边形专项攻克试卷(含答案详细解析).docx)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开