难点解析北师大版九年级数学下册第一章直角三角形的边角关系定向训练试卷(含答案详细解析).docx
-
资源ID:32552848
资源大小:550.88KB
全文页数:22页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
难点解析北师大版九年级数学下册第一章直角三角形的边角关系定向训练试卷(含答案详细解析).docx
九年级数学下册第一章直角三角形的边角关系定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,滑雪场有一坡角为20°的滑道,滑雪道的长AC为100米,则BC的长为()米AB100cos20°CD100sin20°2、某人沿坡度的斜坡向上前进了10米,则他上升的高度为( )A5米BCD3、如图,在直角坐标平面内有一点,那么射线与轴正半轴的夹角的正切值是( )ABCD4、将矩形纸片ABCD按如图所示的方式折起,使顶点C落在C处,若AB = 4,DE = 8,则sinCED为()A2BCD5、将一矩形纸片ABCD沿CE折叠,B点恰好落在AD边上的F处,若,则的值为( )ABCD6、在中,则的值是( )ABCD7、已知RtABC中,则的值为( )ABCD8、如图,在的正方形网格中,每个小正方形的边长均为1,已知的顶点位于正方形网格的格点上,且,则满足条件的是( )ABCD9、的相反数是( )ABCD10、的值为( )A1B2CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,如果小华沿坡度为的坡面由A到B行走了8米,那么他实际上升的高度为_米2、已知,都是锐角,且满足,则_3、_4、如图所示,某商场要在一楼和二楼之间搭建扶梯,已知一楼与二楼之间的地面高度差为米,扶梯 的坡度,则扶梯的长度为_米5、第6号台风“烟花”于2021年7月25日12时30分前后登陆舟山普陀区,登陆时强度为台风级,中心最大风速38米/秒此时一艘船以27nmile/h的速度向正北航行,在A处看烟花S在船的北偏东15°方向,航行40分钟后到达B处,在B处看烟花S在船的北偏东45°方向(1)此时A到B的距离是 _;(2)该船航行过程中距离烟花S中心的最近距离为 _(提示:sin15°)三、解答题(5小题,每小题10分,共计50分)1、6tan230°sin60°2tan45°2、已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3),现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,速度为每秒1个单位长度,点Q沿折线CBA向终点A运动,速度为每秒2个单位长度,设运动时间为t秒(1)求AD,BC之间的距离和sinDAB的值;(2)设四边形CDPQ的面积为S求S关于t的函数关系式及自变量t的取值范围;(3)若存在某一时刻,点P,Q同时在反比例函数的图象上,直接写出此时四边形CDPQ的面积S的值3、如图,在ABC中,B30°,BC40cm,过点A作ADBC,垂足为D,ACD75°(1)求点C到AB的距离;(2)求线段AD的长度4、如图,从甲楼AB的楼顶A,看乙楼CD的楼顶C,仰角为30°,看乙楼(CD)的楼底D,俯角为60°;已知甲楼的高AB=40m求乙楼CD的高度,(结果精确到1m)5、计算:-参考答案-一、单选题1、B【分析】首先根据坡角的概念得到,然后由的余弦值可得,代入AC的值求解即可【详解】解:滑道坡角为20°,AC为100米,故选:B【点睛】此题考查了解三角形的实际应用,解题的关键是熟练掌握锐角三角函数的表示方法2、B【分析】由坡度定义可得位置升高的高度即为坡角所对的直角边根据题意可得BC:AC=1:2,AB=10m,可解出直角边BC,即得到位置升高的高度【详解】解:由题意得,BC:AC=1:2 设BC=x,则AC=2xAB=10, BC2+ AC2=AB2,x2+ (2x)2=102,解得:x=故选:B【点睛】本题主要考查了坡度的定义和解直角三角形的应用,注意画出示意图会使问题具体化3、D【分析】作PMx轴于点M,构造直角三角形,根据三角函数的定义求解【详解】解:作PMx轴于点M,P(6,8),OM=6,PM=8,tan=故选:D【点睛】本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题4、B【分析】由折叠可知,CD=CD=4,再根据正弦的定义即可得出答案【详解】解:纸片ABCD是矩形,CD=AB,C=90°,由翻折变换的性质得,CD=CD=4,C=C=90°,故选:B【点睛】本题可以考查锐角三角函数的运用:在直角三角形中,锐角的正弦为对边比斜边5、D【分析】由AFECFD90°得,根据折叠的定义可以得到CBCF,则,即可求出的值,继而可得出答案【详解】AFECFD90°,由折叠可知,CBCF,矩形ABCD中,ABCD,故选:D【点睛】本题考查了折叠变换的性质及锐角三角函数的定义,解题关键是得到CBCF6、B【分析】根据题意,画出图形,结合余弦函数的定义即可求解【详解】解:由题意,可得图形如下:根据余弦函数的定义可得,故选:B【点睛】此题考查了余弦函数的定义,解题的关键是根据题意画出图形,并掌握余弦函数的定义7、A【分析】根据勾股定理,可得AB的长,根据余弦等于邻边比斜边,可得答案【详解】解:在RtABC中,C90°,AC2,BC1,由勾股定理,得AB,cosB,故选:A【点睛】本题考查了锐角三角函数,利用勾股定理求出斜边,再利用余弦等于邻边比斜边8、B【分析】先构造直角三角形,由求解即可得出答案【详解】A.,故此选项不符合题意;B.,故此选项符合题意;C.,故此选项不符合题意;D.,故此选项不符合题意;故选:B【点睛】本题考查锐角三角函数,掌握在直角三角形中,是解题的关键9、C【分析】先计算=,再求的相反数即可【详解】=,的相反数是,故选C【点睛】本题考查了特殊角的三角函数值,相反数的定义,熟记特殊角的三角函数值是解题的关键10、A【分析】直接求解即可【详解】解:=1,故选:A【点睛】本题考查特殊角的三角函数值,熟记特殊角的三角函数值是解答的关键二、填空题1、【分析】根据坡度的概念(把坡面的垂直高度h和水平方向的距离l的比叫做坡度)求出A,根据直角三角形的性质解答【详解】解:i=1:,tanA=,A=30°,上升的高度=AB=4(米).故答案为4【点睛】本题考查的是解直角三角形的应用-坡度坡角问题,掌握锐角三角函数的定义、坡度坡角的概念是解题的关键2、15°【分析】根据非负数的性质得出,由特殊角的三角函数值求得,计算即可求解【详解】解:,45°30°15°,故答案为:15°【点睛】本题考查了非负数的性质和特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键3、【详解】解:,故答案为:【点睛】本题考查了三角函数的计算,解题关键是熟记特殊角三角函数值4、【分析】如图所示,过点C作地面的垂线,垂直为D,由题意得:,据此利用勾股定理求解即可【详解】解:如图所示,过点C作地面的垂线,垂直为D,由题意得:,故答案为:7【点睛】本题主要考查了勾股定理和坡度,正确作出辅助线,构造直角三角形是解题的关键5、18 nmile nmile nmile 【分析】如图,过作于 先由路程等于速度乘以时间求解 再利用sin15°求解 再设 而 再利用建立方程,再解方程,从而可得答案.【详解】解:如图,过作于 由题意可得: 设 则 设 而 解得: 经检验符合题意;所以:该船航行过程中距离烟花S中心的最近距离为: nmile.故答案为:18 nmile, nmile.【点睛】本题考查的是解直角三角形的实际应用,熟练的利用的值求解是解本题的关键.三、解答题1、【分析】将,代入式子计算即可【详解】解:,原式,【点睛】题目主要考查特殊角三角函数的混合运算,熟记特殊角的三角函数值是解题关键2、(1)4.8;(2),;,;(3)16【分析】(1)过点B作,由已知可得,再根据菱形的性质得到,得到,得到即可得;(2)当时,可得,则,根据梯形面积表示即可;当时,过点Q作,并反向延长交BC于点M,根据面积表示即可;(3)首先根据题意求得t的值,然后代入(2)中的式子计算即可;【详解】解:(1)过点B作,C,D两点的坐标分别为(4,0),(0,3),四边形ABCD是菱形,则,;(2)如图,当时,依据题意可得,则,;当时,过点Q作,并反向延长交BC于点M,根据题意得,则,;(3)点P,Q同时在反比例函数的图象上,则需P,Q分别位于第二、四象限,此时,则,则,点P的横坐标为:,纵坐标为:,点P的坐标为,同理可求,点,解得:或(舍去),【点睛】此题考查了反比例函数的性质、菱形的性质、勾股定理、三角函数等知识此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想、分类讨论思想与方程思想的应用3、(1)20cm;(2)【分析】(1)过C点作CHAB于H,如图,在RtBCH中,利用含30°的直角三角形三边的关系易得CHBC20;(2)在RtBCD中利用含30°的直角三角形三边的关系可得CH20,BHCH20,再利用三角形外角性质计算出BAC45°,则ACH为等腰直角三角形,所以AHCH20,然后利用面积法求AD【详解】解:(1)过C点作CHAB于H,如图,在RtBCH中,B30°,CHBC×4020cm,即点C到AB的距离为20cm;(2)在RtBCH中,B30°,CH20cm,BHCH20cm,ACDB+BAC,BAC75°30°45°,ACH为等腰直角三角形,AHCH20cm,AB(20+20)cm,ADBCCHAB,AD(10+10)cm【点睛】本题主要考查了含30°直角三角形的性质 、解直角三角形、三角形的外角以及三角形的面积等知识点,正确作出辅助线、构造直角三角形成为解答本题的关键4、乙楼CD的高度为53m【分析】由题意易得AEC=AED=90°,AB=DE=40m,然后根据特殊三角函数值可求解AE,CE的长,进而问题可求解【详解】解:由题意得:AEC=AED=90°,AB=DE=40m,EAD=60°,CAE=30°,即乙楼CD的高度为53m【点睛】本题主要考查解直角三角形的应用,熟练掌握特殊三角函数值是解题的关键5、7【分析】先计算乘方,零指数幂,化简绝对值,代入特殊角三角函数值,然后再计算【详解】解:原式413437【点睛】本题考查实数的混合运算,熟练掌握上述基本知识,熟记特殊角三角函数值是解题关键