2022年最新精品解析北师大版八年级数学下册第三章图形的平移与旋转课时练习试卷(无超纲).docx
-
资源ID:32553652
资源大小:784.49KB
全文页数:22页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新精品解析北师大版八年级数学下册第三章图形的平移与旋转课时练习试卷(无超纲).docx
八年级数学下册第三章图形的平移与旋转课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各APP标识的图案是中心对称图形的是()ABCD2、下列图形中,是中心对称图形的是()ABCD3、2022年2月4日2月20日,北京冬奥会将隆重举行,如图是在北京冬奥会会徽征集过程中征集到的一幅图片旋转图片中的“雪花图案”,旋转后要与原图形重合,至少需要旋转( )A180°B120°C90°D60°4、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD5、如图,绕点逆时针旋转到的位置,已知,则等于( )ABCD6、直角坐标系中,点A(-3,4)与点B(3,-4)关于( )A原点中心对称B轴轴对称C轴轴对称D以上都不对7、下列图形中,是中心对称图形的是( )ABCD8、下列图形中,是中心对称图形但不是轴对称图形的是()ABCD9、ABC中,ACB=90°,A=,以C为中心将ABC旋转角到A1B1C(旋转过程中保持ABC的形状大小不变)B1点恰落在AB上,如图,则旋转角与的数量关系为()ABCD10、如图,的顶点坐标为,若将绕点按顺时针方向旋转90°,再向左平移2个单位长度,得到,则点的对应点的坐标是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若点P(m1,5)与点Q(3,n)关于原点成中心对称,则mn的值是_2、已知矩形ABCD中,AD5,AB3,现将边AD绕它的一个端点旋转,当另一端点怡好落在边BC所在直线的点E处时,线段DE的长度为 _3、如图,ABC的顶点A,B分别在x轴,y轴上,ABC90°,OAOB1,BC2,将ABC绕点O顺时针旋转,每次旋转90°,则第2021次旋转结束时,点C的坐标为 _4、如图,把ABC绕点C顺时针旋转某个角度得到,A30°,170°,则旋转角的度数为_5、如图,线段AB按一定的方向平移到线段CD,点A平移到点C,若AB=6cm,四边形ABDC的周长为28cm,则BD=_cm三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,CAB70°,在同一平面内,将ABC绕点A旋转到AB'C的位置,使得CCAB,求CC'A的度数2、如图,的顶点坐标分别为画出绕点顺时针旋转,得到并直接写出的面积3、如图,在平面直角坐标系中,已知点A(2,2),点P是x轴上的一个动点(1)A1,A2分别是点A关于原点的对称点和关于y轴对称的点,直接写出点A1,A2的坐标,并在图中描出点A1,A2(2)求使APO为等腰三角形的点P的坐标4、如图,在平面直角坐标系中,ABC的顶点坐标分别为A(1,0),B(4,1),C(2,2)(1)直接写出点B关于原点对称的点B的坐标: ;(2)平移ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的A1B1C1;(3)画出ABC绕原点O逆时针旋转90°后得到的A2B2C25、如图,在平面直角坐标系中,已知ABC的三个顶点的坐标分别为A(4,3)、B(3,1)、C(1,3)(1)请按下列要求画图:将ABC先向右平移4个单位长度、再向上平移2个单位长度,得到A1B1C1,画出A1B1C1;A2B2C2与ABC关于原点O成中心对称,画出A2B2C2(2)在(1)中所得的A1B1C1和A2B2C2关于点M成中心对称,请写出对称中心M点的坐标 -参考答案-一、单选题1、C【分析】根据中心对称图形的概念对各选项分析判断即可得解【详解】A、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意;B、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意;C、图形关于中心旋转180°能完全重合,所以是中心对称图形,故本选项符合题意;D、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意故选:C【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合2、D【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形【详解】A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D【点睛】本题考查了中心对称图形的概念,理解概念并知道一些常见的中心对称图形是关键3、D【分析】“雪花图案”可以看成正六边形,根据正六边形的中心角为60°,即可解决问题【详解】解:“雪花图案”可以看成正六边形,正六边形的中心角为60°,这个图案至少旋转60°能与原雪花图案重合故选:D【点睛】本题考查旋转对称图形,生活中的旋转现象等知识,解题的关键是理解题意,掌握正六边形的性质4、B【分析】根据轴对称图形(一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称)和中心对称图形(指把一个图形绕着某一点旋转,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称)的概念对各选项分析判断即可得解【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B既是轴对称图形,又是中心对称图形,故本选项符合题意;C不是轴对称图形,是中心对称图形,故本选项不符合题意;D是轴对称图形,不是中心对称图形,故本选项不符合题意故选:B【点睛】题目主要考查轴对称与中心对称图形的识别,理解这两个定义是解题关键5、D【分析】根据题意找到旋转角,根据即可求解【详解】解:绕点逆时针旋转到的位置,故选D【点睛】本题考查了旋转的性质,几何图形中角度的计算,找到旋转角是解题的关键6、A【分析】观察点A与点B的坐标,依据关于原点中心对称的点,横坐标与纵坐标都互为相反数可得答案【详解】根据题意,易得点(-3,4)与(3,-4)的横、纵坐标互为相反数,则这两点关于原点中心对称故选A【点睛】本题考查在平面直角坐标系中,关于原点中心对称的两点的坐标之间的关系掌握关于原点对称的点,横坐标与纵坐标都互为相反数是解答本题的关键7、D【详解】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项不符合题意;D、是中心对称图形,故本选项符合题意;故选:D【点睛】本题主要考查了中心对称图形的定义,熟练掌握在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键8、B【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A既是轴对称图形,又是中心对称图形,故本选项不符合题意;B不是轴对称图形,是中心对称图形,故本选项符合题意;C既是轴对称图形,又是中心对称图形,故本选项不符合题意;D是轴对称图形,不是中心对称图形,故本选项不符合题意故选:B【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合9、D【分析】由旋转性质以及等腰三角形性质计算即可【详解】由旋转性质可知A=A1=,BC=B1C,A1CA+ACB1=90°,ACB1+B1CB=90°,B1CB=A1CA =,又ABC+A=90°,A1B1C+A1=90°ABC=A1B1C=等腰三角形CB1B中,CB1B=CBB1=,中CB1B+CBB1+B1CB=180°故选:D【点睛】本题考查了旋转的性质,等腰三角形性质以及三角形内角和等,旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等10、A【分析】画出旋转平移后的图形即可解决问题【详解】解:旋转,平移后的图形如图所示,故选:A【点睛】本题考查坐标与图形变化旋转,解题的关键是理解题意,学会利用图象法解决问题二、填空题1、9【分析】根据关于原点对称点的坐标特征求出、的值,再代入计算即可【详解】解:点与点关于原点成中心对称,即,故答案为:9【点睛】本题考查关于原点对称的点坐标特征,解题的关键是掌握关于原点对称的点坐标特征,即纵坐标互为相反数,横坐标也互为相反数2、2或3或5【分析】分两种情形:AD=AE,DE=DA,利用勾股定理分别求解即可【详解】解:如图,四边形ABCD是矩形,AB=CD=3,AD=BC=5,ABC=DCB=90°,当AD=5时,=4,DE1=2,=2×4+1=9,DE2=3,当DE=DA=5时,DE=5,综上所述,满足条件的DE的值为2或3或5故答案为:2或3或5【点睛】本题考查了旋转变换,矩形的性质,等腰三角形的性质,勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型3、【分析】过点C作 轴于点D,根据 OAOB1,AOB=90°,可得ABO=45°,从而得到CBD=45°,进而得到BD=CD=2,可得到点,再由将ABC绕点O顺时针旋转,第一次旋转90°后,点,将ABC绕点O顺时针旋转,第二次旋转90°后,点,将ABC绕点O顺时针旋转,第三次旋转90°后,点,将ABC绕点O顺时针旋转,第四次旋转90°后,点, 由此发现,ABC绕点O顺时针旋转四次一个循环,即可求解【详解】解:如图,过点C作 轴于点D,OAOB1,AOB=90°,ABO=45°,ABC90°,CBD=45°,BCD=45°,BD=CD,BC2, ,BD=CD=2,OD=OB+BD=3,点,将ABC绕点O顺时针旋转,第一次旋转90°后,点,将ABC绕点O顺时针旋转,第二次旋转90°后,点,将ABC绕点O顺时针旋转,第三次旋转90°后,点,将ABC绕点O顺时针旋转,第四次旋转90°后,点, 由此发现,ABC绕点O顺时针旋转四次一个循环, ,第2021次旋转结束时,点C的坐标为故答案为:【点睛】本题主要考查了勾股定理,坐标与图形,图形的旋转,明确题意,准确得到规律是解题的关键4、#【分析】由旋转的性质可得再利用三角形的外角的性质求解从而可得答案.【详解】解: 把ABC绕点C顺时针旋转某个角度得到,A30°, 170°, 故答案为:【点睛】本题考查的是旋转的性质,三角形的外角的性质,利用性质的性质求解是解本题的关键.5、8【分析】图形平移后,AB平移到线段CD,点A平移到点C,则A和C是对应点,B和D是对应点,可得AB+BD=14,最后得出结果【详解】解:图形平移后,对应点连成的线段平行且相等,AB平移到线段CD,点A平移到点C,则A和C是对应点,B和D是对应点,AC=BD,AB=CDAC+BD+AB+CD=2AB+2BD=28,AB+BD=14,AB=6cm,BD=14-6=8cm,故答案为:8【点睛】根据平移的性质,图形平移后,对应点连成的线段平行且相等,求出结果三、解答题1、CC'A =70°【分析】先根据平行线的性质,由得ACC=CAB=70°,再根据旋转的性质得AC=AC,BAB=CAC,于是根据等腰三角形的性质有ACC=ACC=70°【详解】,ACC=CAB=70°,ABC绕点A旋转到ABC的位置,AC=AC,BAB=CAC,在ACC中,AC=ACACC=CC'A =70°,【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等2、图见解析,面积为2【分析】先求出旋转后A1(5,2),B1(2,3),C1(4,1),然后描点,连线,利用矩形面积减三个三角形面积即可【详解】解:的顶点坐标分别为,绕点顺时针旋转,得到,点A1横坐标-1+5-(-1)=5,纵坐标-1+-1-(-4)=2,A1(5,2),点B1横坐标-1+2-(-1)=2,纵坐标-1+-1-(-5)=3,B1(2,3),点C1横坐标-1+4-(-1)=4,纵坐标-1+-1-(-3)=1,C1(4,1),在平面直角坐标系中描点A1(5,2),B1(2,3),C1(4,1),顺次连结A1B1, B1C1,C1A1,则A1B1C1为所求;,=,=,=2【点睛】本题考查三角形旋转画图,割补法求三角形面积,掌握求旋转坐标的方法,描点法画图,割补法求面积是解题关键3、(1)A1(2,2),A1(2,2),见解析;(2)P点坐标为(2,0)或(2,0)或(4,0)或(2,0)【分析】(1)利用关于原点对称和y轴对称的点的坐标特征写出点A1,A2的坐标,然后描点;(2)先计算出OA的长,再分类讨论:当OPOA或APAO或POPA时,利用直角坐标系分别写出对应的P点坐标【详解】解:(1)A1(2,2),A1(2,2),如图,(2)如图,设P点坐标为(t,0),当OPOA时,P点坐标为或;当APAO时,P点坐标为(4,0),当POPA时,P点坐标为(2,0),综上所述,P点坐标为或或(4,0)或(2,0)【点睛】本题考查的是轴对称的性质,中心对称的性质,坐标与图形,等腰三角形的定义,清晰的分类讨论是解本题的关键.4、(1)(4,1);(2)见解析;(3)见解析【分析】(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;(3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可【详解】(1)点B关于原点对称的点B的坐标为(4,1),故答案为:(4,1);(2)如图所示,A1B1C1即为所求(3)如图所示,A2B2C2即为所求【点睛】本题主要考查作图平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点5、(1)见解析;见解析;(2)M(2,1)【分析】(1)利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可;利用中心对称的性质分别作出A,B,C的对应点A2,B2,C2即可;(3)对应点连线的交点M即为所求【详解】解:(1)如图,A1B1C1即为所求;如图,A2B2C2即为所求;(2)如图,点M即为所求,M(2,1),故答案为:(2,1)【点睛】本题考查作图旋转变换,平移变换等知识,解题的关键是掌握旋转变换,平移变换的性质,属于中考常考题型