欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年精品解析北师大版九年级数学下册第二章二次函数单元测试试题.docx

    • 资源ID:32554201       资源大小:904.19KB        全文页数:32页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年精品解析北师大版九年级数学下册第二章二次函数单元测试试题.docx

    北师大版九年级数学下册第二章二次函数单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式中,是的二次函数的是( )ABCD2、在平面直角坐标系xOy中,下列函数的图象经过点的是( )ABCD3、正方形的面积y与它的周长x满足的函数关系是( )A正比例函数B一次函数C二次函数D反比例函数4、抛物线y2(x+1)2不经过的象限是()A第一、二象限B第二、三象限C第三、四象限D第一、四象限5、已知二次函数,当时,总有,有如下几个结论:当时,;当时,c的最大值为0;当时,y可以取到的最大值为7上述结论中,所有正确结论的序号是( )ABCD6、如图,抛物线的对称轴是直线下列结论:;其中正确结论的个数是( )A1个B2个C3个D4个7、已知抛物线经过,若时,则,的大小关系是( )ABCD8、某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为( )A21元B22元C23元D24元9、若点A(1,y1),B(2,y2),C(m,y3)在抛物线y = a (x+1)2 + c(a 0)上,且m的值不可能是( )A5B3C- 3D- 510、抛物线的图象过点,对称轴为直线,有下列四个结论:;的最大值为3;方程有实数根其中正确的为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、请写出一个开口向上,并且与y轴交于点(0,-5)的抛物线的表达式_2、抛出的一小球飞行的高度y与飞行时间x之间满足:,则该小球第2秒时的高度与第_秒时的高度相同3、如图,正方形的边长为4,以正方形对角线交点为原点建立平面直角坐标系,作出函数yx2与yx2的图象,则阴影部分的面积是_4、如图,在平面直角坐标系中,点在抛物线上,过点作轴的垂线交抛物线于另一点,点、在线段上,分别过点、作轴的垂线交抛物线于、两点,连接,若四边形是矩形,则线段的长为 _5、如图,在平面直角坐标系中,抛物线可以看作是抛物线经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由抛物线得到抛物线的过程:_三、解答题(5小题,每小题10分,共计50分)1、抛物线yax2bx2(a0)与x轴交于点A(1,0),B(3,0),与y轴交于点C(1)求抛物线的解析式;(2)如图1,抛物线的对称轴与x轴相交于点H,连接AC,BCABC绕点B顺时针旋转一定角度后落在第一象限,当点C的对应点C1落在抛物线的对称轴上时,求此时点A的对应点A1的坐标;(3)如图2,过点C作轴交抛物线于点E,已知点D在抛物线上且横坐标为,在y轴左侧的抛物线上有一点P,满足PDCEDC,求点P的坐标2、如图,抛物线与轴交于,两点,与轴交于点,抛物线的顶点为,连接,为线段上的一个动点(不与、重合),过点作轴,交抛物线于点,交轴于点(1)求抛物线的解析式;(2)当时,求点的坐标;(3)连接、,当的面积等于的面积时(点与点不重合),求点的坐标;(4)在(3)的条件下,在轴上,是否存在点,使为等腰三角形,若存在,请直接写出点的坐标,若不存在,请说明理由3、如图,抛物线经过两点,且与轴交于点(1)求该抛物线的函数表达式;(2)抛物线上是否存在点,使得是以为直角边的直角三角形?若存在,求出所有符合条件的点的坐标;若不存在,说明理由;(3)点为的中点,若有一动点自点处出发,沿直线运动至轴上的某点(设为点),再沿直线运动至该抛物线对称轴上的某点(设为点),最后又沿直线运动至点,则点运动的总路程最短为_(请直接写出答案)4、如图,抛物线yx2+bx2过点A(1,m)和B(5,m),与y轴交于点C(1)求b和m的值;(2)连接AB,AB与y轴交于点D请求出:点D的坐标;ABC的面积5、对于二次函数,请回答下列问题:(1)求出此函数图像的顶点坐标;(2)当时,请直接写出的取值范围-参考答案-一、单选题1、C【分析】根据二次函数的定义依次判断【详解】解:A、不是二次函数,不符合题意;B、,不是二次函数,不符合题意;C、,是二次函数,符合题意;D、,不是二次函数,不符合题意;故选:C【点睛】此题考查二次函数的定义:形如的函数是二次函数,解题的关键是正确掌握二次函数的构成特点2、B【分析】利用时,求函数值进行一一检验是否为0即可【详解】A.当时,图象过点,选项A不合题意;B.当时,图象过点,选项B合题意;C.当时,图象过点,选项C不合题意;D.当时,无意义,选项D不合题意故选:B【点睛】本题考查求函数值,识别函数经过点,掌握求函数值的方法,点在函数图像上点的坐标满足函数解析式是解题关键3、C【分析】由周长,先求出正方形的边长,然后结合面积公式,即可得到答案【详解】解:正方形的周长为x,正方形的边长为,正方形的面积;故选:C【点睛】本题考查了函数表达式,解题的关键是掌握正方形的面积和周长公式4、C【分析】根据顶点式写出顶点坐标,开口向上,进而即可求得的答案【详解】解: y2(x+1)2,开口向上,顶点坐标为该函数不经过第三、四象限如图,故选C【点睛】本题考查了图象的性质,根据解析式求得开口方向和顶点坐标是解题的关键5、B【分析】当时,根据不等式的性质求解即可证明;当时,二次函数的对称轴为:,分三种情况讨论:当时;当时;当时;分别利用二次函数的的最值问题讨论证明即可得;当,时,分别求出相应的y的值,然后将时,y的值变形为:,将各个不等式代入即可得证【详解】解:当时, ,即,正确;当时,二次函数的对称轴为:,当时,即时,函数在处取得最小值,即,函数在处取得最大值,即,二者矛盾,这种情况不存在;当时,即时,函数在处取得最小值,即,当时,即时,时,;时,不符合题意,舍去;当时,即时,时,;时,不符合题意,舍去;,当时,即时,函数在处取得最小值,即,函数在处取得最大值,即,二者矛盾,这种情况不存在;综上可得:;故错误;当时,且;当时,且;当时,且;当时,当时,y可以取到的最大值为7;正确;故选:B【点睛】题目主要考查二次函数的基本性质及不等式的性质,熟练掌握不等式的性质是解题关键6、C【分析】根据函数图象确定a、b、c的正负,即可确定的正误;根据对称轴确定b和2a的关系,进而确定的正误;根据函数图象确定x=-2的函数值的正负,然后代入抛物线的解析式即可确定的正误;当x=-1时,可确定a-b+c0,当x=1时,函数值小于0,即a+b+c0,可判断的正误;当x=-1时,y有最大值,然后与x=m时的函数值,列不等式化简即可【详解】解:有抛物线开口方向向下,与y轴相交正半轴a0,c0抛物线的对称轴为x=-1 ,即b=2a0,故正确;b=2ab-2a=0,故错误;如图:抛物线的对称轴为x=-1,当x=0时,函数值大于0当x=-2时,函数值大于0,4a-2b+c0,即4a+c2b,故错误;由图象可知,抛物线的对称轴为x=-1,此时函数有最大值且函数值大于0当x=-1时,函数值大于0,即a-b+c0当x=1时,函数值小于0,当x=1时,函数值小于0,即a+b+c0(a+c)2-b2=(a-b+c)(a+b+c)0,即正确;当x=-1时,函数有最大值y=a-b+c当x=m时,函数值为y=am2+bm+ca-b+cam2+bm+c,即,故正确故选C【点睛】本题主要考查了二次函数的图象的性质,灵活运用数形结合思想成为解答本题的关键7、C【分析】由,纵坐标相同可以看出AB关于对称轴对称,即对称轴为,再结合C、D坐标可得C、D关于对称轴对称,再根据,比较m和p的大小即可【详解】,对称轴为,关于对称轴对称,即在对称轴右边当也在对称轴右边时此时由y随x的增大而减小,当在对称轴右边时此时由y随x的增大而减小,故选:C【点睛】本题考查二次函数的性质,解题的关键是根据AB纵坐标相同可以看出A、B关于对称轴对称8、B【分析】设每天的销售利润为 元,每件的定价为 元,则每件的利润为元,平均每天售出件, 根据每天的销售利润等于每件的利润乘以销售量,列出函数关系式,即可求解【详解】解:设每天的销售利润为 元,每件的定价为 元,则每件的利润为元,平均每天售出件, 根据题意得: , 当 时, 最大,即每件的定价为22元时,每天的销售利润最大故选:B【点睛】本题主要考查了二次函数的应用,明确题意,准确列出函数关系式是解题的关键9、C【分析】根据点A(1,y1),B(2,y2),C(m,y3)在抛物线(a 0)上,求出函数值,利用值之差得出,根据a 0可得得出,根据得出即可【详解】解:点A(1,y1),B(2,y2),C(m,y3)在抛物线(a 0)上,a 0,m可以取5,3,-5,m的值不可能是-3故选择C【点睛】本题考查抛物线上点的特征,函数值,自变量范围,掌握抛物线上点的特征,函数值,自变量范围是解题关键10、D【分析】根据抛物线的对称性与过点,可得抛物线与轴的另一个交点为可判断,再依次判断可判断,由对称轴为直线,可判断,由函数与的图象有两个交点,可判断,从而可得答案.【详解】解: 抛物线的图象过点,对称轴为直线, 抛物线与轴的另一个交点为: 则 故符合题意; 抛物线与轴交于正半轴,则 则 故不符合题意; 对称轴为直线, 当时, 故不符合题意;当时,则 而函数与的图象有两个交点, 方程有实数根故符合题意;综上:符合题意的是:故选D【点睛】本题考查的是二次函数的图象与性质,掌握“利用二次函数的图象与性质判断的符号以及代数式的符号,函数的最值,方程的根”是解本题的关键.二、填空题1、(答案不唯一)【分析】设,根据题意,c= -5,a0,符合题意即可【详解】设,根据题意,c= -5,a0,故答案为:【点睛】本题考查了二次函数解析式与各系数之间的关系,解答时,符合题意即可2、4【分析】根据题意求得抛物线的对称轴,根据抛物线的对称性即可求得答案【详解】解:的对称轴为:第2秒时的高度与第4秒时的高度相同故答案为:4【点睛】本题考查了二次函数的应用,二次函数的对称性,求得对称轴是解题的关键3、8【分析】根据题意,观察图形可得图中的阴影部分的面积是图中正方形面积的一半,而正方形面积为16,由此可以求出阴影部分的面积【详解】解:函数yx2与yx2的图象关于x轴对称,图中的阴影部分的面积是图中正方形面积的一半,而边长为4的正方形面积为16,所以图中的阴影部分的面积是8故答案为8【点睛】本题考查的是关于x轴对称的二次函数解析式的特点,解答此题的关键是根据函数解析式判断出两函数图象的特点,再根据正方形的面积即可解答4、2【分析】利用待定系数法求出抛物线解析式,设点横坐标为,点C(m,4),根据四边形是矩形,可证EFx轴,F、E两点纵坐标相同,根据、两点在抛物线上,得出F,E关于y轴对称,可证点C与点D关于y轴对称,得出点D的坐标为(-m,4)根据,求出点坐标为,根据函数解析式列方程,解方程即可【详解】解:把代入中得,解得,设点横坐标为,点C(m,4),四边形是矩形,EFCD即EFAB,过点A作轴的垂线交抛物线于另一点,ABx轴,EFx轴,F、E两点纵坐标相同,、两点在抛物线上,F,E关于y轴对称,点C与点D关于y轴对称,点D的坐标为(-m,4),则,点坐标为,解得(舍或故答案为:2【点睛】本题考查待定系数法求抛物线解析式,矩形性质,轴对称判定与性质,根据矩形性质得出FEx轴,利用点F的坐标特征列方程是解题关键5、抛物线先向右平移4个单位,再关于直线轴对称得到抛物线【分析】由抛物线向右平移4个单位后得到抛物线后,此时正好与关于直线对称,即可得到答案【详解】解:抛物线向右平移4个单位后得到抛物线后,正好与关于直线对称,抛物线可以看做是抛物线先向右平移4个单位,再关于直线轴对称得到的,故答案为:抛物线先向右平移4个单位,再关于直线轴对称得到抛物线【点睛】本题主要考查了二次函数的平移,轴对称变化,解题的关键在于能够熟练掌握相关知识进行求解三、解答题1、(1);(2)(3,4);(3)(,)【分析】(1)把A(1,0),B(3,0)代入抛物线解析式利用待定系数法求解二次函数的解析式即可;(2)如图,先求解C(0,2),对称轴为直线,可得BHCO2结合旋转得BC1BC ,证明RTBC1HRTCBO(HL),再证明旋转角A1BAC1BC90°,从而可得答案;(3)先求解D(,),E(2,2),如图,过点D作DGCE交CE的延长线于点G,证明CGDG,可得ECDGDC45° ,如图,在CD的上方作PDCEDC交y轴于点Q,交抛物线于点P,证明QCDECD,可得QCEC2,可得Q(0,0),再求解直线DQ的解析式为,联立 ,再解方程组可得答案.【详解】解:(1)将A(1,0),B(3,0)代入抛物线解析式得 解得 抛物线的解析式为(2)抛物线的解析式为,A(1,0),B(3,0)C(0,2),对称轴为直线 BHCO2由旋转得BC1BC 则RTBC1HRTCBO(HL) C1BHBCOC1BCC1BHOBCBCOOBC90°旋转角A1BAC1BC90°,即A1Bx轴 A1BBA4,B(3,0)A1(3,4)(3)抛物线的解析式为,D的横坐标为当x时,y,则D(,)轴,C(0,2),对称轴为直线x1E(2,2) 如图,过点D作DGCE交CE的延长线于点G, CGDG,ECDGDC45° 如图,在CD的上方作PDCEDC交y轴于点Q,交抛物线于点P轴 ,QCE90°QCDECD45°CDCD,QCDECD(ASA)QCEC2,C(0,2),Q(0,0)D(,),设直线 解得: 直线DQ的解析式为则 ,消去得: 解得: 当时, 当时, 所以方程组的解为:或,【点睛】本题考查的是全等三角形的判定与性质,利用待定系数法求解二次函数的解析式,旋转的性质,求解一次函数与二次函数的交点坐标,作出适当的辅助线构建全等三角形,再利用全等三角形的性质证明相等的线段,再得到点的坐标是解本题的关键.2、(1);(2)(2,1);(3)(2,1);(4)(0,),(0,),(0,-),(0,1)【分析】(1)应用待定系数法将ABC三点坐标代入解析式即可解答;(2)设P点横坐标为x,用x表示出PG、PF的长,再根据列方程求解即可;(3)当时,的面积等于的面积,先求出直线DF解析式,再求出直线DF与抛物线交点坐标F,进而根据点F坐标求出点P坐标;(4)分CP=CQ、CP=PQ、QC=QP讨论,分别求出Q点坐标【详解】解:(1)依题意得: ,解得:,抛物线的解析式为:;(2)点、点在直线BC上,直线BC解析式为:,设P点坐标为,则,当时,即:,解得:,(不合题意舍去),当时,P点坐标为(2,1),当时,点的坐标(2,1);(3),故抛物线的顶点为(1,4),当时,的面积等于的面积,设此时直线解析为,解得:,故直线解析为,依题意得:,解得:,点P的横坐标为x=2,此时点P坐标为(2,1)(4)点P坐标为(2,1);点C坐标(0,3),故CP=,设点Q坐标为(0,y)若,则;解得:,若,则,解得:(不合题意,舍去),;若,则,解得:;综上所述:点P为(0,),(0,),(0,-),(0,1)时,为等腰三角形【点睛】本题考查了二次函数待定系数法求解函数解析式的基本思路,同时考察了数形结台思想和建立数学模型以及发散思维构造图形并推理逻辑的能力3、(1);(2)存在,点P的坐标为(1,4)或(-2,-5);(3)【分析】(1)利用待定系数法求解;(2)分两种情况:当C为直角顶点时,过点C作CPBC,交抛物线于点P,过点P作PHy轴于H,得到PH=CH,设P(),则,求出a即可;当B为直角顶点时,过点B作BPBC,交抛物线于点P,交y轴于R,过点P作PGy轴于G,求出OB=OR=3,PG=RG,设P(),则,求出a即可;(3)当点E与点O重合时,点P运动的路径最短,作点E关于抛物线对称轴的对应点为T,连接CT交对称轴于点F,则点P运动的路径为ME+EF+CF,由轴对称求出T(2,0),勾股定理求出CT,即可求出点P运动的路径ME+EF+CF=ME+CT得到答案【详解】解:(1)将代入,得,解得,该抛物线的函数表达式是;(2)存在当C为直角顶点时,过点C作CPBC,交抛物线于点P,过点P作PHy轴于H,OB=OC,BOC=90°,BOC为等腰直角三角形,BCO=45°,PCH=45°,PHC为等腰直角三角形,即PH=CH,设P(),则,解得(舍去),此时,P(1,4);当B为直角顶点时,过点B作BPBC,交抛物线于点P,交y轴于R,过点P作PGy轴于G,CBO=45°,GPR=OBR=45°,PRG为等腰直角三角形,OB=OR=3,PG=RG,设P(),则,解得(舍去),此时,P(-2,-5);综上,点P的坐标为(1,4)或(-2,-5);(3)当点E与点O重合时,点P运动的路径最短,如图,作点E关于抛物线对称轴的对应点为T,连接CT交对称轴于点F,则点P运动的路径为ME+EF+CF,抛物线的对称轴为直线x=1,T(2,0),C(0,3),点P运动的路径ME+EF+CF=ME+CT=,故答案为:【点睛】此题考查了二次函数的综合知识,待定系数法求函数解析式,抛物线的对称轴,直角三角形的性质,勾股定理,等腰直角三角形的性质,最短路径问题,综合掌握各知识点是解题的关键4、(1)b=-4,m=3;(2)点D的坐标为(0,3);15【分析】(1)根据点A(-1,m)和B(5,m)是抛物线y=x2+bx-2上的两点,可以得到b的值,即可得到函数解析式,把A(-1,m)代入解析式即可求得m的值;(2)由m的值即可求得点D的坐标;求得C的坐标,再根据三角形面积公式即可求得【详解】解:(1)点A(-1,m)和B(5,m)是抛物线y=x2+bx-2上的两点,解得,b=-4,抛物线解析式为y=x2-4x-2,把A(-1,m)代入得,m=1+4-2=3;(2)m=3,点D的坐标为(0,3);由y=x2-4x-2可知,抛物线与y轴交点C的坐标为(0,-2),OC=2,A(-1,4)和B(5,4),AB=6,SABC=×6×(2+3)=15【点睛】本题考查了二次函数图象上点的坐标特征、三角形的面积,解答本题的关键是明确题意,利用二次函数的性质解答5、(1)(-1,-4);(2)【分析】(1)把二次函数解析式化为顶点式求解即可;(2)先求出抛物线对称轴为直线,推出当x>-1时,y随x增大而增大,当x<-1时,y随x增大而减小,然后分别求出当时,当时,由此即可得到答案【详解】解:(1)抛物线解析式为,抛物线的顶点坐标为(-1,-4);(2)抛物线解析式为,抛物线对称轴为直线,抛物线开口向上,当x>-1时,y随x增大而增大,当x<-1时,y随x增大而减小,抛物线的最小值为-4,当时,当时,当2<x<2时,【点睛】本题主要考查了求二次函数顶点坐标,二次函数的函数值取值范围,解题的关键在于能够熟练掌握二次函数的相关知识

    注意事项

    本文(2022年精品解析北师大版九年级数学下册第二章二次函数单元测试试题.docx)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开