难点详解沪科版九年级数学下册第25章投影与视图重点解析练习题(精选).docx
-
资源ID:32557736
资源大小:446.32KB
全文页数:19页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
难点详解沪科版九年级数学下册第25章投影与视图重点解析练习题(精选).docx
沪科版九年级数学下册第25章投影与视图重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,沿正方体相邻的三条棱的中点截掉一个角,则它的左视图是( )ABCD2、如图所示的几何体,它的左视图是( )ABCD3、棱长为a的小正方体按照如图所示的规律摆放,从上面看第100个图,得到的平面图形的面积为( )A100aBCD4、下面左侧几何体的主视图是( )ABCD5、如图,将一块含30°角的三角板ABC的直角顶点C放置于直线m上,点A,点B在直线m上的正投影分别为点D,点E,若AB10,BE3,则AB在直线m上的正投影的长是()A5B4C3+4D4+46、如图,身高1.5米的小明(AB)在太阳光下的影子AG长1.8米,此时,立柱CD的影子一部分是落在地面的CE,一部分是落在墙EF上的EH若量得米,米,则立柱CD的高为( )A2.5mB2.7mC3mD3.6m7、如图是一个几何体的实物图,则其主视图是( )ABCD8、图1、图2均是正方体,图3是由一些大小相同的正方体搭成的几何体从正面看和左面看得到的形状图,小敏同学经过研究得到如下结论:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中ABC45°;(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则ab19其中正确结论的个数有( )A1个B2个C3个D4个9、如图所示几何体的左视图是( )ABCD10、如图,是一个由多个相同小正方体堆积而成的几何体的主视图和俯视图,那么这个几何体最少需要用()个小正方体A12B11C10D9第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、由一些大小相同的小正方体搭成的几何体从正面和从左面看到的图形如图所示,则搭成该几何体的小正方体的个数最少是_2、如图是某圆柱体果罐,它的主视图是边长为的正方形,该果罐侧面积为_3、如图所示是给出的几何体三个方向看到的形状,则这个几何体最多由_个小正方体组成4、某立体图形的三视图中,主视图是矩形,请写出一个符合题意的立体图形名称:_5、如图,是一个直棱柱的三视图,这个直棱柱的表面积是_三、解答题(5小题,每小题10分,共计50分)1、图中是由几个小立方块搭成的几何体的从上面看的形状图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的从正面看和从左面看的形状图2、画出下列几何体的主视图、左视图与俯视图3、请从正面、左面、上面观察, 画出该几何体的三视图4、如图,这是一个由7个小立方体搭成的几何体,请你画出它的三视图5、如图,九(1)班的小明与小艳两位同学去操场测量旗杆DE的高度,已知直立在地面上的竿AB的长为3m某一时刻,测得竹竿AB在阳光下的投影BC的长为2m(1)请你在图中画出此时旗杆DE在阳光下的投影;(2)在测量竹竿AB的影长时,同时测得旗杆DE在阳光下的影长为6m,请你计算旗杆DE的高度-参考答案-一、单选题1、C【分析】根据从左边看,首先看的见的部分是一个正方形,然后在右上角有截面的一条线看不见,要用虚线表示,由此求解即可【详解】解:由题意得:从左边看,首先看的见的部分是一个正方形,然后在右上角有截面的一条线看不见,要用虚线表示,故选C【点睛】本题主要考查了几何体的三视图,解题的关键在于能够熟练掌握三视图的定义2、D【分析】左视图:从物体左面所看的平面图形,注意:看到的棱画实线,看不到的棱画虚线,据此进行判断即可【详解】解:如图所示,几何体的左视图是:故选:D【点睛】本题考查简单组合体的三视图,正确掌握观察角度是解题关键3、B【分析】先探究第100个图形俯视图所看到的小正方形的个数,再结合每个小正方形的面积为 从而可得答案.【详解】解:(1)第1个图有1层,共1个小正方体, 第2个图有2层,第2层正方体的个数为1+2=3, 第3个图有3层,第3层正方体的个数为1+2+3=6, 第n层时,正方体的个数为1+2+3+n=n(n+1), 当n=100时,第100层的正方体的个数为×100×101=5050,从上面看第100个图,看到了5050个小正方形,所以面积为: 故选B【点睛】本题考查的是三视图,俯视图的面积,掌握“正方体堆砌图形的俯视图”是解本题的关键.4、A【分析】找出从几何体的正面看所得到的图形即可【详解】解:从几何体的正面看,是一行两个并列的矩形故选:A【点睛】本题主要考查了几何体的三视图,准确分析判断是解题的关键5、C【分析】根据30°角所对的直角边等于斜边的一半,可得AC=5,根据锐角三角函数可得BC的长,再根据勾股定理可得CE的长;通过证明ACDCBE,再根据相似三角形的性质可得CD的长,进而得出DE的长【详解】解:在RtABC中,ABC=30°,AB=10,AC=AB=5,BC=ABcos30°=10×,在RtCBE中,CE=,CAD+ACD=90°,BCE+ACD=90°,CAD=BCE,RtACDRtCBE,CD=,DE=CD+BE=,即AB在直线m上的正投影的长是,故选:C【点睛】本题考查了平行投影,掌握相似三角形的判断与性质以及勾股定理是解答本题的关键6、A【分析】将太阳光视为平行光源,可得,MD=HE,即可得CM的值,故计算CD=CM+DM即可【详解】如图所示,过D点作BG平行线交FE于点H,过E点作BG平行线交CD于点MBG/ME/DHBGA=MEC,BAG=DCE=90°,MD=HECD=CM+DM=1+1.5=2.5故答案选:A【点睛】本题考查了相似三角形的判断即性质,由太阳光投影判断出平行关系进而求得相似是解题的关键7、C【分析】找到从正面看所得到的图形即可【详解】解:从正面看可得到一个矩形和一个下底和矩形相邻的梯形的组合图故选:C【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图8、B【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着可判断(1);正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形可判断(2)(3);作出相应的俯视图,标出搭成该几何体的小正方体的个数最多(少)时的数字即可为【详解】解:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;正确,因为正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,所以至少要剪开1257条棱(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;正确,因为用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中ABC45°;错误,因为ABC是等边三角形,所以ABC60°(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b19错误,应该是a6,b11,a+b17故选:B【点睛】此题主要考查了正方体的展开图的性质,截正方体以及简单组合体的三视图等知识,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键9、D【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都变现在左视图中【详解】解:从左视图看,易得到一个矩形,矩形中有一条横行的虚线,故选:D【点睛】本题考查简单组合体的三视图,解题的关键是理解三视图的定义,属于中考常考题型10、D【分析】根据几何体的主视图和俯视图可得:该几何体由3层组成,最底层至少6个小正方体;第二层2个小正方体;最高层1个小正方体,即可求解【详解】解:根据几何体的主视图和俯视图得:该几何体由3层组成,最底层至少6个小正方体;第二层2个小正方体;最高层1个小正方体;这个几何体最少需要用个小正方体故选:D【点睛】本题主要考查了几何体的三视图,熟练掌握三视图的特征是解题的关键二、填空题1、4【分析】由主视图可知几何体有两列,两层;由左视图可知几何体有两排,两层,所以第一列最少1个正方体,第二列有最少有3个正方体,由此可解【详解】解:由主视图,左视图画出几何体,如图:2、【分析】根据圆柱体的主视图为边长为10cm的正方形,得到圆柱的底面直径和高,从而计算侧面积【详解】解:果罐的主视图是边长为10cm的正方形,为圆柱体,圆柱体的底面直径和高为10cm,侧面积为=,故答案为:【点睛】本题考查了几何体的三视图,解题的关键是根据三视图得到几何体的相关数据3、10【分析】从俯视图可知第一层有5个小正方体,从正视图和左视图可知第二层最多有5个,据此即可求得答案【详解】由俯视图可知第一层有5个小正方体,由已知的正视图和左视图可知,第2层最多有5个小正方体,故该几何体最多有5+5=10个故答案为:10【点睛】考查几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图掌握以上知识是解题的关键4、圆柱【分析】根据三视图的定义求解即可【详解】解:圆柱的主视图是矩形,故答案为:圆柱【点睛】本题考查三视图,解题的关键是掌握三视图的定义5、36【分析】由三视图可得这是一个直三棱柱,再把各个面的面积相加即可【详解】解:由三视图可得这是一个直三棱柱,它的高为2,32+4252,这个直三棱柱的底面的直角三角形,这个直三棱柱的表面积为:36故答案为:36【点睛】此题考查由三视图判断几何体,掌握几何体的特征以及面积的计算方法是解决问题的关键三、解答题1、见解析【分析】根据立体图形的三视图特点解答【详解】解:从正面看,从左面看【点睛】此题考查立体图形的三视图,正确理解三视图所看的角度及小正方体的位置是解题的关键2、见解析【分析】主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图【详解】如图所示:主视图左视图俯视图【点睛】本题考查简单组合体的三视图,掌握三视图的画法是正确判断的前提,画三视图时应注意“长对正,宽相等、高平齐”3、见解析【分析】根据主视图的定义画出从前面先后看得到的图形,根据左视图的定义画出从左向右看得到的图形,根据俯视图的定义画出从上向下看得到的图形即可【详解】解:主视图是从前面先后看得到的图形,图形分三列,左边列有三层3个小正方形,中间列一层1个小正方形,右边列有两层2个小正方形,根据看到的图形可画出主视图,左视图是从左向右看得到的图形,图形分三列,左边列左边列有三层3个小正方形,中间列两层2个小正方形,右边列有一层1个小正方形,根据看到的图形可画出左视图,俯视图是从上向下看得到的图形,图形分三列,上对齐,左边列有3个小正方形,中间列2个小正方形,右边列有1个小正方形,根据看到的图形可画出俯视图【点睛】本题考查简单组合体的三视图,掌握三视图的定义是解题关键4、图见解析【分析】从正面看,得到从左往右3列正方形的个数依次为3,2,1;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为2,1,1,依此画出图形即可【详解】解:如下图所示,【点睛】此题考查三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形5、(1)见详解;(2)旗杆DE的高度为9m【分析】(1)连接AC,然后根据投影相关知识可进行作图;(2)由(1)可知ACB=DFE,然后易得ABCDEF,进而根据相似三角形的性质可求解【详解】解:(1)连接AC,过点D作DFAC,交直线BC于点F,线段EF即为DE的投影,如图所示:(2)DFAC,ACB=DFE,ABC=DEF=90°,ABCDEF,AB=3m,BC=2m,EF=6m,DE=9m;答:旗杆DE的高度为9m【点睛】本题主要考查相似三角形的性质与判定及投影,熟练掌握相似三角形的性质与判定及投影是解题的关键