2022年最新强化训练沪科版九年级数学下册第26章概率初步章节测试试卷(精选含答案).docx
-
资源ID:32559102
资源大小:359.86KB
全文页数:19页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新强化训练沪科版九年级数学下册第26章概率初步章节测试试卷(精选含答案).docx
沪科版九年级数学下册第26章概率初步章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列事件为随机事件的是( )A四个人分成三组,恰有一组有两个人B购买一张福利彩票,恰好中奖C在一个只装有白球的盒子里摸出了红球D掷一次骰子,向上一面的点数小于72、从分别标有号数1到10的10张除标号外完全一样的卡片中,随意抽取一张,其号数为3的倍数的概率是( )ABCD3、养鱼池养了同一品种的鱼,要大概了解养鱼池中的鱼的数量,池塘的主人想出了如下的办法:“他打捞出80尾鱼,做了标记后又放回了池塘,过了三天,他又捞了一网,发现捞起的90尾鱼中,带标记的有6尾”你认为池塘主的做法( )A有道理,池中大概有1200尾鱼B无道理C有道理,池中大概有7200尾鱼D有道理,池中大概有1280尾鱼4、下列说法正确的是()A调查“行云二号”各零部件的质量适宜采用抽样调查方式B5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83C某游戏的中奖率为1%,则买100张奖券,一定有1张中奖D某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,则乙班成绩更稳定5、乒乓球比赛以11分为1局,水平相当的甲、乙两人进行乒乓球比赛,在一局比赛中,甲已经得了8分,乙只得了2分,对这局比赛的结果进行预判,下列说法正确的是( )A甲获胜的可能性比乙大B乙获胜的可能性比甲大C甲、乙获胜的可能性一样大D无法判断6、下列说法正确的有( )等边三角形、菱形、正方形、圆既是轴对称图形又是中心对称图形无理数在和之间从,这五个数中随机抽取一个数,抽到无理数的概率是一元二次方程有两个不相等的实数根若边形的内角和是外角和的倍,则它是八边形A个B个C个D个7、一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,这些球除颜色外完全相同,其中有3个黄球,2个蓝球则随机摸出一个红球的概率为()ABCD8、下列关于随机事件的概率描述正确的是( )A抛掷一枚质地均匀的硬币出现“正面朝上”的概率为0.5,所以抛掷1000次就一定有500次“正面朝上”B某种彩票的中奖率为5%,说明买100张彩票有5张会中奖C随机事件发生的概率大于或等于0,小于或等于1D在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率9、下列说法正确的是( )A“明天降雨的概率是80%”表示明天有80%的时间都在降雨B“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上C“彩票中奖的概率是1%”表示买100张彩票肯定会中奖D“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在附近10、如图,有5张形状、大小、材质均相同的卡片,正面分别印着北京2022年冬奥会的越野滑雪、速度滑冰、花样滑冰、高山滑雪、单板滑雪大跳台的体育图标,背面完全相同现将这5张卡片洗匀并正面向下放在桌上,从中随机抽取一张,抽出的卡片正面恰好是“滑冰”项目的图案的可能性是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、学校决定从甲、乙、丙三名学生中随机抽取两名介绍学习经验,则同时抽到乙、丙两名同学的概率为_2、佳禾同学2021年10月的某一天去电影院看电影长津湖,“买了一张电影票座位号是偶数”属于 _(填“必然事件”、“随机事件”或“不可能事件”)3、某射击运动员在同一条件下的射击成绩记录如下:射击次数20401002004001000“射中9环以上”的次数153378158321801“射中9环以下”的频率通过计算频率,估计这名运动员射击一次时“射中9环以上”的概率是_(结果保留小数点后一位)4、在0,1,2,3,4,5这六个数中,随机取出一个数记为a,使得关于x的一元二次方程有实数解的概率是_5、现有四张分别标有数字2,1,0,2的卡片,它们除数字外完全相同把卡片背面朝上洗匀,从中随机抽取一张,记下数字不放回,然后背面朝上洗匀,再随机抽取一张,则两次抽出的卡片上所标数字之和为正数的概率是 _三、解答题(5小题,每小题10分,共计50分)1、不透明的袋中有3个大小相同的小球,其中2个为白色,1个为红色,请用画树状图(或列表)的方法,求一次摸出两个球“都是白球”的概率2、甲、乙、丙、丁4人聚会,每人带了一件礼物,4件礼物外盒包装完全相同,将4件礼物放在一起甲先从中随机抽取一件,不放回,乙再从中随机抽取一件,求甲、乙两人抽到的都不是自己带来的礼物的概率3、在“双减”政策下,某学校自主开设了A书法、B篮球、C足球、D器乐四门选修课程供学生选择,每门课程被选到的机会均等若小明和小刚两位同学各计划选修一门课程,请用列表或树状图求他们两人恰好同时选修球类的概率4、某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会已知在摇奖机内装有2个红球和2个白球,除颜色外其他都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如表)甲种品牌化妆品球两红一红一白两白礼金券(元)6126乙种品牌化妆品球两红一红一白两白礼金券(元)12612(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;(2)如果一个顾客当天在本店购买满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品?并说明理由5、新冠病毒在全球肆虐,疫情防控刻不容缓某校为了解学生对新冠疫情防控知识的了解程度,组织七、八年级学生开展新冠疫情防控知识测试(满分为10分)学校学生处从七、八年级学生中各随机抽取了20名学生的成绩进行了统计下面提供了部分信息抽取的20名七年级学生的成绩(单位:分)为:10,10,9,9,9,9,9,9,8,8,8,8,8,8,8,7,7,6,5,5抽取的40名学生成绩分析表:年级七年级八年级平均分88.1众 数8b中位数a8方 差1.91.89请根据以上信息,解答下列问题:(1)直接写出上表中a,b的值;(2)该校七、八年级共有学生2000人,估计此次测试成绩不低于9分的学生有多少人?(3)在所抽取的七年级与八年级得10分的学生中,随机抽取2名学生在全校学生大会上进行新冠疫情防控知识宣讲,求所抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率-参考答案-一、单选题1、B【分析】根据事件发生的可能性大小判断【详解】解:A、四个人分成三组,恰有一组有两个人,是必然事件,不合题意;B、购买一张福利彩票,恰好中奖,是随机事件,符合题意;C、在一个只装有白球的盒子里摸出了红球,是不可能事件,不合题意;D、掷一次骰子,向上一面的点数小于7,是必然事件,不合题意;故选:B【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件2、C【分析】用3的倍数的个数除以数的总数即为所求的概率【详解】解:1到10的数字中是3的倍数的有3,6,9共3个,卡片上的数字是3的倍数的概率是故选:C【点睛】本题考查概率的求法用到的知识点为:概率所求情况数与总情况数之比3、A【分析】设池中大概有鱼x尾,然后根据题意可列方程,进而问题可求解【详解】解:设池中大概有鱼x尾,由题意得:,解得:,经检验:是原方程的解;池塘主的做法有道理,池中大概有1200尾鱼;故选A【点睛】本题主要考查分式方程的应用及概率,熟练掌握分式方程的应用及概率是解题的关键4、B【分析】分别对各个选项进行判断,即可得出结论【详解】解:A、调查“行云二号”各零部件的质量适宜采用全面调查方式,原说法错误,故该选项不符合题意;B、5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83,正确,故该选项符合题意;C、个游戏的中奖率是1%,只能说买100张奖券,有1%的中奖机会,原说法错误,故该选项不符合题意;D、某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,40<80,则甲班成绩更稳定,原说法错误,故该选项不符合题意;故选:B【点睛】本题考查了概率、众数、全面调查、抽样调查以及方差知识;熟练掌握有关知识是解题的关键5、A【分析】根据事件发生的可能性即可判断【详解】甲已经得了8分,乙只得了2分,甲、乙两人水平相当甲获胜的可能性比乙大故选A【点睛】此题主要考查事件发生的可能性,解题的关键是根据题意进行判断6、A【分析】根据概率公式、无理数的定义、轴对称图形、中心对称图形、根的判别式以及多边形的内角和计算公式和外角的关系,对每一项进行分析即可得出答案【详解】解:菱形,正方形,圆既是轴对称图形又是中心对称图形,等边三角形是轴对称图形,故本选项错误,不符合题意;无理数在和之间,正确,故本选项符合题意;在,这五个数中,无理数有,共个,则抽到无理数的概率是,故本选项错误,不符合题意;因为,则一元二次方程有两个相等的实数根,故本选项错误,不符合题意;若边形的内角和是外角和的倍,则它是八边形,正确,故本选项符合题意;正确的有个;故选:【点睛】此题考查了概率公式、无理数、轴对称图形、中心对称图形、根的判别式以及多边形的内角与外角,熟练掌握定义和计算公式是解题的关键7、D【分析】在一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,得出红球的个数,再根据概率公式即可得出随机摸出一个红球的概率【详解】解:在一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,红球有:个, 则随机摸出一个红球的概率是:故选:D【点睛】本题主要考查了概率公式的应用,解题的关键是掌握:概率所求情况数与总情况数之比8、D【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断【详解】解:概率反映的是随机性的规律,但每次试验出现的结果具有不确定,故选项A、B错误;随机事件发生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故选项C错误;在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率,故选项D正确;故选:D【点睛】本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件9、D【分析】根据概率的意义去判断即可【详解】“明天降雨的概率是80%”表示明天有降雨的可能性是80%,A说法错误;抛一枚硬币正面朝上的概率为”表示正面向上的可能性是,B说法错误;“彩票中奖的概率是1%”表示中奖的可能性是1%,C说法错误;“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在附近,D说法正确;故选D【点睛】本题考查了概率的意义,正确理解概率的意义是解题的关键10、B【分析】先找出滑冰项目图案的张数,再根据概率公式即可得出答案【详解】解:有5张形状、大小、质地均相同的卡片,滑冰项目图案的有速度滑冰和花样滑冰2张,从中随机抽取一张,抽出的卡片正面恰好是滑冰项目图案的概率是;故选:B【点睛】本题考查了概率的知识用到的知识点为:概率=所求情况数与总情况数之比二、填空题1、【分析】画树状图,共有6种等可能的结果,同时抽到乙、丙两名同学的结果有2个,再由概率公式解题【详解】解:画树状图如图:共有6个等可能的结果,同时抽到乙、丙两名同学的结果有2个,同时抽到乙、丙两名同学的概率为,故答案为:【点睛】本题考查列树状图表示概率,是重要考点,掌握相关知识是解题关键2、随机事件【分析】根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件【详解】“买了一张电影票座位号是偶数”属于随机事件故答案为:随机事件【点睛】本题考查了随机事件的定义,熟悉定义是解题的关键3、0.8【分析】重复试验次数越多,其频率越能估计概率,求出射击1000次时的频率即可【详解】解:由题意可知射击1000次时,运动员射击一次时“射中9环以上”的频率为用频率估计概率为0.801,保留小数点后一位可知概率值为0.8故答案为:0.8【点睛】本题考查了概率解题的关键在于明确频率估计概率时要在重复试验次数尽可能多的情况下4、【分析】根据题意,分,时,进而求得一元二次方程根的判别式不小于0的情形数量,即可求得概率【详解】解:当时,该方程不是一元二次方程,当时,解得时,关于x的一元二次方程有实数解随机取出一个数记为a,使得关于x的一元二次方程有实数解的概率是故答案为:【点睛】本题考查了利用概率公式计算概率,一元二次方程根的判别式判断根的情况,一元二次方程的定义,掌握以上知识是解题的关键当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根5、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽出的卡片所标数字之和为正数的情况,再利用概率公式即可求得答案【详解】解:画树状图如下所示:由树状图可知,一共有16中等可能性的结果数,其中两次抽出的卡片上所标数字之和为正数的结果数有(-1,2),(0,2),(2,-1),(2,0)四种情况,P两次抽出的卡片上所标数字之和为正数,故答案为:【点睛】本题主要考查了列表法或树状图法求概率解题的关键在于能够熟练掌握:概率=所求情况数与总情况数之比三、解答题1、【分析】根据题意用列表法列出所有等可能的情况,找出两个球“都是白球”的情况,然后根据概率公式求解即可【详解】解:由题意可得,所有等可能的情况如下: 白色1白色2红色白色1(白色2,白色1)(红色,白色1)白色2(白色1,白色2)(红色,白色2)红色(白色1,红色)(白色2,红色)由表格可知,共有6种等可能的情况,其中两个球“都是白球”的有2种情况,一次摸出两个球“都是白球”的概率【点睛】本题考查的是用列表法或画树状图法求概率解题的关键是熟练掌握列表法或画树状图法列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比2、【分析】画出树状图,然后根据概率公式列式进行计算即可得解【详解】解:设甲、乙、丙、丁4人的礼物分别记为a、b、c、d,根据题意画出树状图如图:一共有12种等可能的结果,甲、乙2人抽到的都不是自己带来的礼物的结果有7个,甲、乙两人抽到的都不是自己带来的礼物的概率为【点睛】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比3、【分析】画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修球类的结果数,然后根据概率公式求解【详解】解:画树状图为:共有16种等可能的结果数,其中他们两人恰好选修球类的结果数为4,所以他们两人恰好选修球类的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率4、(1)摇出一红一白的概率=(2)选择甲品牌化妆品,理由见解析【分析】(1)让所求的情况数除以总情况数即为所求的概率;(2)算出相应的平均收益,比较即可(1)解:树状图为:一共有6种情况,摇出一红一白的情况共有4种,摇出一红一白的概率=;(2)(2)两红的概率P=,两白的概率P=,一红一白的概率P=,甲品牌化妆品获礼金券的平均收益是:×6+×12+×6=10元乙品牌化妆品获礼金券的平均收益是:×12+×6+×12=8元选择甲品牌化妆品【点睛】本题主要考查的是概率的计算,画树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比5、(1)(2)(3)【分析】(1)根据众数和中位数的概念求解可得;(2)用总人数乘以样本中七、八年级不低于9分的学生人数和所占比例即可得,(3)根据列表法求概率即可(1)根据抽取的20名七年级学生的成绩找到第10个和第11个成绩都是8,则中位数为8,即,根据条形统计图可知9分的有6人,人数最多,则众数为9,即(2)解:此次测试成绩不低于9分的七年级学生有8人,八年级学生有9人此次测试成绩不低于9分的学生有(人)(3)解:七年级得10分的有2人,八年级得10分的有3人设七年级的2人分别为,八年级的3人分别列表如下,根据列表可知,共有20种等可能结果,其中1名七年级学生和1名八年级学生的情形有12钟则所抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率为【点睛】本题考查了求中位数,众数,根据样本估计总体,列表法求概率,掌握以上知识是解题的关键