欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    人教版八年级数学下册第十八章-平行四边形专项训练试题(无超纲).docx

    • 资源ID:32623410       资源大小:584.88KB        全文页数:34页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人教版八年级数学下册第十八章-平行四边形专项训练试题(无超纲).docx

    人教版八年级数学下册第十八章-平行四边形专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将矩形纸片ABCD沿BD折叠,得到BCD,CD与AB交于点E,若140°,则2的度数为()A25°B20°C15°D10°2、直角三角形中,两直角边长分别是12和5,则斜边上的中线长是( )A2.5B6C6.5D133、如图,在ABC中,点E,F分别是AB,AC的中点已知B55°,则AEF的度数是()A75°B60°C55°D40°4、如图,四边形ABCD是平行四边形,下列结论中错误的是( )A当ABCD是矩形时,ABC90°B当ABCD是菱形时,ACBDC当ABCD是正方形时,ACBDD当ABCD是菱形时,ABAC5、在RtABC中,C90°,若D为斜边AB上的中点,AB的长为10,则DC的长为( )A5B4C3D26、如图,在长方形ABCD中,AB10cm,点E在线段AD上,且AE6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上以vcm/s的速度由点B向点C运动,当EAP与PBQ全等时,v的值为()A2B4C4或D2或7、下列A:B:C:D的值中,能判定四边形ABCD是平行四边形的是( )A1:2:3:4B1:4:2:3C1:2:2:1D3:2:3:28、如图,四边形ABCD中,A=60°,AD=2,AB=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )ABCD9、如图,矩形ABCD的面积为1cm2,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B,;依此类推,则平行四边形AO2014C2015B的面积为( )cmA B C D10、如图,把一张长方形纸片ABCD沿对角线AC折叠,点B的对应点为点B,AB与DC相交于点E,则下列结论正确的是 ( )ADABCABBACDBCD CADAEDAECE第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平行四边形ABCD中,E、F分别在CD和BC的延长线上,则_2、在平行四边形ABCD中,BF平分ABC,交AD于点F,CE平分BCD,交AD于点E,AB=6,EF=2,则BC的长为_3、如图,正方形的边长为4,它的两条对角线交于点,过点作边的垂线,垂足为,的面积为,过点作的垂线,垂足为,的面积为,过点作的垂线,垂足为,的面积为,的面积为,那么_,则_4、如图,直线l1l3,l2l3,垂足分别为P、Q,一块含有45°的直角三角板的顶点A、B、C分别在直线l1、l2、线段PQ上,点O是斜边AB的中点,若PQ等于,则OQ的长等于 _5、如图,在矩形ABCD中,BC2,ABx,点E在边CD上,且CEx,将BCE沿BE折叠,若点C的对应点落在矩形ABCD的边上,则x的值为_三、解答题(5小题,每小题10分,共计50分)1、如图:已知BCD是等腰直角三角形,且DCB90°,过点D作ADBC,使ADBC,在AD上取一点E,连结CE,点B关于CE的对称点为B1,连结B1D,并延长B1D交BA的延长线于点F,延长CE交B1F于点G,连结BG(1)求证:CBGCDB1;(2)若AEDE,BC10,求BG长;(3)在(2)的条件下,H为直线BG上一点,使HCG为等腰三角形,则所有满足要求的BH的长是 (直接写出答案)2、如图,ACB90°,CDAB于点D,AF平分CAB交CD于点E,交BC于点F,作EGAB交CB于点G(1)求证:CEF是等腰三角形;(2)求证:CFBG;(3)若F是CG的中点,EF1,求AB的长3、如图,正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点试画出一个顶点都在格点上,且面积为10的正方形 4、在RtABC中,ACB90°,ACBC,点D为AB边上一点,过点D作DEAB,交BC于点E,连接AE,取AE的中点P,连接DP,CP(1)观察猜想: 如图(1),DP与CP之间的数量关系是 ,DP与CP之间的位置关系是 (2)类比探究: 将图(1)中的BDE绕点B逆时针旋转45°,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明;若不成立,请说明理由(3)问题解决: 若BC3BD3, 将图(1)中的BDE绕点B在平面内自由旋转,当BEAB时,请直接写出线段CP的长5、如图,在矩形中,为对角线(1)用尺规完成以下作图:在上找一点,使,连接,作的平分线交于点;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,若,求的度数-参考答案-一、单选题1、D【解析】【分析】根据矩形的性质,可得ABD40°,DBC50°,根据折叠可得DBCDBC50°,最后根据2DB CDBA进行计算即可【详解】解:四边形ABCD是矩形,ABC90°,CDAB,ABD=140°,DBCABC-ABD=50°,由折叠可得DB CDBC50°,2DB CDBA50°40°10°,故选D【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出DBC和DBA的度数2、C【解析】【分析】利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答【详解】解:由勾股定理得,斜边,所以,斜边上的中线长故选:C【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,解题的关键是熟记性质3、C【解析】【分析】证EF是ABC的中位线,得EFBC,再由平行线的性质即可求解【详解】解:点E,F分别是AB,AC的中点,EF是ABC的中位线,EFBC,AEF=B=55°,故选:C【点睛】本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EFBC是解题的关键4、D【解析】【分析】由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.【详解】解:当ABCD是矩形时,ABC90°,正确,故A不符合题意;当ABCD是菱形时,ACBD,正确,故B不符合题意;当ABCD是正方形时,ACBD,正确,故C不符合题意;当ABCD是菱形时,ABBC,故D符合题意;故选D【点睛】本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.5、A【解析】【分析】利用直角三角形斜边的中线的性质可得答案【详解】解:C=90°,若D为斜边AB上的中点,CD=AB,AB的长为10,DC=5,故选:A【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半6、D【解析】【分析】根据题意可知当EAP与PBQ全等时,有两种情况:当EA=PB时,APEBQP,当AP=BP时,AEPBQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可【详解】解:当EAP与PBQ全等时,有两种情况:当EA=PB时,APEBQP(SAS),AB=10cm,AE=6cm,BP=AE=6cm,AP=4cm,BQ=AP=4cm;动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,点P和点Q的运动时间为:4÷2=2s,v的值为:4÷2=2cm/s;当AP=BP时,AEPBQP(SAS),AB=10cm,AE=6cm,AP=BP=5cm,BQ=AE=6cm,5÷2=2.5s,2.5v=6,v=故选:D【点睛】本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键7、D【解析】【分析】两组对角分别相等的四边形是平行四边形,所以A和C是对角,B和D是对角,对角的份数应相等【详解】解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件故选:D【点睛】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法8、A【解析】【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN,从而求得EF的最大值 连接DB,过点D作DHAB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;【详解】解:ED=EM,MF=FN, EF=DN, DN最大时,EF最大, N与B重合时DN=DB最大,在RtADH中, A=60° AH=2×=1,DH=,BH=ABAH=31=2, DB=, EFmax=DB=, EF的最大值为故选A【点睛】本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF=DN是解题的关键9、C【解析】【分析】根据“同底等高”的原则可知平行四边形AOC1B底边AB上的高等于BC的,则有平行四边形AOC1B的面积,平行四边形AOC2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,则有平行四边形ABC3O2的面积,;由此规律可进行求解【详解】解:O1为矩形ABCD的对角线的交点,平行四边形AOC1B底边AB上的高等于BC的,平行四边形AOC1B的面积=×1=,平行四边形AO1C2B的对角线交于点O2,平行四边形AOC2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,平行四边形ABC3O2的面积=××1=,依此类推,平行四边形ABC2014O2015的面积=cm2故答案为:C【点睛】本题主要考查矩形的性质与平行四边形的性质,熟练掌握矩形的性质与平行四边形的性质是解题的关键10、D【解析】【分析】根据翻折变换的性质可得BAC=CAB,根据两直线平行,内错角相等可得BAC=ACD,从而得到ACD=CAB,然后根据等角对等边可得AE=CE,从而得解【详解】解:矩形纸片ABCD沿对角线AC折叠,点B的对应点为B,BAC=CAB,ABCD,BAC=ACD,ACD=CAB,AE=CE,结论正确的是D选项故选D.【点睛】本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键二、填空题1、8【解析】【分析】证明四边形ABDE是平行四边形,得到DE=CD, 过点E作EHBF于H,证得CH=EH,利用勾股定理求出EH,再根据30度角的性质求出EF【详解】解:四边形ABCD是平行四边形,AB=CD, ,四边形ABDE是平行四边形,DE=CD, 过点E作EHBF于H,ECH=,CH=EH, CH=EH=4,EHF=90°,EF=2EH=8,故答案为:8【点睛】此题考查了平行四边形的判定及性质,勾股定理,直角三角形30度角的性质,熟记各知识点并应用解决问题是解题的关键2、10或14#14或10【解析】【分析】利用BF平分ABC, CE平分BCD,以及平行关系,分别求出、,通过和是否相交,分两类情况讨论,最后通过边之间的关系,求出的长即可【详解】解: 四边形ABCD是平行四边形,BF平分ABC, CE平分BCD, , 由等角对等边可知:, 情况1:当与相交时,如下图所示:, ,情况2:当与不相交时,如下图所示:,故答案为:10或14【点睛】本题主要是考查了平行四边形的性质,熟练运用平行关系+角平分线证边相等,是解决本题的关键,还要注意根据和是否相交,本题分两类情况,如果没考虑仔细,会漏掉一种情况3、 【解析】【分析】由正方形的性质得出、,得出规律,再求出它们的和即可【详解】解:四边形是正方形,;故答案为:;【点睛】本题是图形的变化题,考查了正方形的性质、三角形面积的计算,解题的关键是通过计算三角形的面积得出规律4、【解析】【分析】由“AAS”可证ACPCBQ,可得APCQ,PCBQ,由“AAS”可证APOBHO,可得APBH,OPOH,由等腰直角三角形的性质和直角三角形的性质可求解【详解】解:如图,连接PO,并延长交l2于点H,l1l3,l2l3,l1l3,APCBQCACB90°,PAC+ACP90°ACP+BCQ,PACBCQ,在ACP和CBQ中,ACPCBQ(AAS),APCQ,PCBQ,PC+CQAP+BQPQ,APBQ,OAPOBH,点O是斜边AB的中点,AOBO,在APO和BHO中,APOBHO(AAS),APBH,OPOH,BH+BQAP+BQPQ,PQQH,PQH90°,PHPQ12,OPOH,PQH90°,OQPH6故答案为:6【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形和直角三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形和直角三角形的性质定理是解题的关键5、或【解析】【分析】分两种情况进行解答,即当点落在边上和点落在边上,分别画出相应的图形,利用翻折变换的性质,勾股定理进行计算即可【详解】解:如图1,当点落在边上,由翻折变换可知,在中,由勾股定理得,在中,由勾股定理得,即,解得,或(舍去),如图2,当点落在边上,由翻折变换可知,四边形是正方形,故答案为:或【点睛】本题考查翻折变换,解题的关键是掌握翻折变换的性质以及勾股定理是解决问题的前提三、解答题1、(1)证明过程见解析;(2)BG的长为4;(3)2或64或或6+4【分析】(1)连结BB1交CG于点M,交CD于点Q,证明四边形ABCD是正方形,再根据对称的性质得到CE垂直平分BB1,得到BCGB1CG(SSS),即可得解;(2)设BG交AD于点N,得到BCQCDE(ASA),得到CQDE5,BQCE5,再根据勾股定理得到BM,最后利用勾股定理计算即可;(3)根据点G的位置不同分4种情况进行讨论计算即可;【详解】(1)证明:如图1,连结BB1交CG于点M,交CD于点Q,ADBC,ADBC,四边形ABCD是平行四边形,BCDC,BCD90°,四边形ABCD是正方形,点B1与点B关于CE对称,CE垂直平分BB1,BCB1C,BGB1G,CGCG,BCGB1CG(SSS),CBGCB1G,DCB1C,CDB1CB1G,CBGCDB1(2)解:如图1,设BG交AD于点N,BCCDAD10,DEAD5,CDE90°,CE,BCQCDEBMC90°,CBQ90°BCMDCE,BCQCDE(ASA),CQDE5,BQCE5,CMBQ,SBCQBQCMBCCQ,CM2,BM,ABCBAN90°,GDN+CDB190°,ABN+CBG90°,GDNABN,GNDANB,GDN+GNDABN+ANB90°,BGB190°,BGMB1GMBGB145°,BMG90°,BMGBGM45°,GMBM4,BG,BG的长为4(3)解:如图1,由(2)得CM2,GM4,CG2+46,如图2,CHCG6,则CHGCGH45°,GCH90°,GH,BHGHBG642;如图3,HGCG6,且点H与点B在直线FB1的同侧,BHHGBG64;如图4,CHGH,则HCGHGC45°,CHG90°,CH2+GH2CG2,2GH2(6)2,GH3,BHBGGH43;如图5,HGCG6,且点H与点B在直线FB1的异侧,BHHG+BG6+4,综上所述,BH的长为2或64或或6+4,故答案为:2或64或或6+4【点睛】本题主要考查了全等三角形的综合,勾股定理,垂直平分线的判定与性质,正方形的性质,准确分析计算是解题的关键2、(1)见解析;(2)见解析;(3)【分析】(1)由余角的性质可得3=7=4,可得CE=CF,可得CEF为等腰三角形;(2)过E作EMBC交AB于M,得出平行四边形EMBG,推出BG=EM,由“AAS”可证CAEMAE,推出CE=EM,由三角形的面积关系可求GB的长;(3)证明CEF是等边三角形,求出BC,可得结论【详解】(1)证明:过E作EMBC交AB于M,EGAB,四边形EMBG是平行四边形,BGEM,BEMD,CDAB,ADCACB90°,1+790°,2+390°,AE平分CAB,12,34,47,CECF,CEF是等腰三角形;(2)证明:过E作EMBC交AB于M,则四边形EMBG是平行四边形,BG=EM,ADCACB90°,CAD+B90°,CAD+ACD90°,ACDBEMD,在CAE和MAE中,CAEMAE(AAS),CEEM,CECF,EMBG,CFBG(3)CDAB,EGAB,EGCD,CEG90°,CFFG,EFCFFG,CECF,CECFEF1,CEF是等边三角形,ECF60°,BC3,B30°,RtABC中解得【点睛】本题考查了平行四边形的性质和判定,三角形的内角和定理,全等三角形的性质和判定,等腰三角形的性质和判定等知识点,主要考查学生综合运用定理进行推理的能力,有一定的难度3、见解析【分析】根据正方形的面积为10,可得其边长为 ,据此可得正方形DEFG【详解】解:由勾股定理可得:如图所示,四边形DEFG即为所求【点睛】本题主要考查了应用与设计作图以及勾股定理的运用,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图4、(1)PDPC,PDPC;(2)成立,见解析;(3)2或4【分析】(1)根据直角三角形斜边中线的性质,可得,根据角之间的关系即可,即可求解;(2)过点P作PTAB交BC的延长线于T,交AC于点O,根据全等三角形的判定与性质求解即可;(3)分两种情况,当点E在BC的上方时和当点E在BC的下方时,过点P作PQBC于Q,利用等腰直角三角形的性质求得,即可求解【详解】解:(1)ACB90°,ACBC,点P为AE的中点,故答案为:,(2)结论成立理由如下:过点P作PTAB交BC的延长线于T,交AC于点O则,由勾股定理可得:点P为AE的中点,在中,(3)如图31中,当点E在BC的上方时,过点P作PQBC于Q则,由(2)可得,为等腰直角三角形由勾股定理得,如图32中,当点E在BC的下方时,同法可得PCPD2综上所述,PC的长为4或2【点睛】此题考查了等腰直角三角形的性质,全等三角形的判定与性质,勾股定理,解题的关键是熟练掌握相关基本性质,做辅助线,构造出全等三角形5、(1)图形见解析;(2)【分析】(1)利用尺规根据题意即可完成作图;(2)结合(1)根据等腰三角形的性质和三角形外角定理可得的度数【详解】(1)如图,点E和点F即为所求;(2),ABD=68°,AEB=AEB=68°EAB=180°-68°-68°=44°,EAD=90°-44°=46°,AF平分DAE,FAE=DAE=23°,【点睛】题考查了尺规作图-作角平分线,矩形的性质,熟练掌握5种基本作图是解决此类问题的关键

    注意事项

    本文(人教版八年级数学下册第十八章-平行四边形专项训练试题(无超纲).docx)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开