难点解析北师大版九年级数学下册第一章直角三角形的边角关系难点解析试题(含解析).docx
-
资源ID:32630509
资源大小:686.05KB
全文页数:27页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
难点解析北师大版九年级数学下册第一章直角三角形的边角关系难点解析试题(含解析).docx
九年级数学下册第一章直角三角形的边角关系难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、计算的值等于( )AB1C3D2、如图,在RtABC中,C90°,BC1,以下正确的是( )ABCD3、如图,在正方形中、是的中点,是上的一点,则下列结论:(1);(2);(3);(4)其中结论正确的个数有( )A1个B2个C3个D4个4、如图要测量小河两岸相对的两点P,A的距离,点P位于点A正北方向,点C位于点A的北偏西46°,若测得PC50米,则小河宽PA为()A50sin44°米B50cos44°C50tan44°米D50tan46°米5、已知某水库大坝的横断面为梯形,其中一斜坡的坡度,则斜坡的坡角为( )A30°B45°C60°D150°6、如图,某建筑物AB在一个坡度为i1:0.75的山坡BC上,建筑物底部点B到山脚点C的距离BC20米,在距山脚点C右侧同一水平面上的点D处测得建筑物顶部点A的仰角是42°,在另一坡度为i1:2.4的山坡DE上的点E处测得建筑物顶部点A的仰角是24°,点E到山脚点D的距离DE26米,若建筑物AB和山坡BC、DE的剖面在同一平面内,则建筑物AB的高度约为()(参考数据:sin24°0.41,cos24°0.91,tan24°0.45,sin42°0.67cos42°0.74,tan42°0.90)A36.7米B26.3 米C15.4米D25.6 米7、已知在RtABC中,C=90°,A=60°,则 tanB的值为( )AB1CD28、比较下图长方形内阴影部分面积的大小,甲( )乙ABCD无法确定9、小菁同学在数学实践活动课中测量路灯的高度如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°0.6,cos35°0.8,tan35°0.7,sin65°0.9,cos65°0.4,tan65°2.1)()A3.2米B3.9米C4.7米D5.4米10、在正方形网格中,每个小正方形的边长都是1,BAC的位置如图所示,则sinBAC的值为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在正方形中,对角线,相交于点O,点E在边上,且,连接交于点G,过点D作,连接并延长,交于点P,过点O作分别交、于点N、H,交的延长线于点Q,现给出下列结论:;其中正确的结论有_(填入正确的序号)2、如图,三角形纸片中,点D在边上,连接,使得,将这张纸片沿直线翻折,点C落在处,连接,且,若,则点A到直线的距离是_3、计算:_4、在中,则_5、矩形ABCD中,E为边AB上一点,将沿DE折叠,使点A的对应点F恰好落在边BC上,连接AF交DE于点N,连接BN若,(1)矩形ABCD的面积为_;(2)的值为_三、解答题(5小题,每小题10分,共计50分)1、(1)计算:;(2)解方程:2、已知如图,cosABC ,点M在射线BA上,BM8,点N在射线BC上(1)给出条件:MN7;MN9;BMN75°能使BN的长唯一确定的条件是 (填序号);(2)在第(1)题中选一个使BN的长唯一确定的条件,求出此时BN的长度3、计算:2sin30°3tan45°sin245°+cos60°4、在中,为锐角且(1)求的度数;(2)求的正切值5、计算:-参考答案-一、单选题1、C【分析】直接利用特殊角的三角函数值代入求出答案【详解】解:故选C【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题的关键2、C【分析】根据勾股定理求出AB,三角函数的定义求相应锐角三角函数值即可判断【详解】解:在RtABC中,C90°,BC1,根据勾股定理AB=,cosA=,选项A不正确;sinA,选项B不正确;tanA,选项C正确;cosB,选项D不正确故选:C【点睛】本题主要考查锐角三角函数的定义,勾股定理,掌握锐角三角函数定义是解题的关键3、B【分析】首先根据正方形的性质与同角的余角相等证得:BAECEF,则可证得正确,错误,利用有两边对应成比例且夹角相等三角形相似即可证得ABEAEF,即可求得答案【详解】解:四边形ABCD是正方形,BC90°,ABBCCD,AEEF,AEFB90°,BAEAEB90°,AEBFEC90°,BAECEF,BAECEF,BECE,BE2ABCFAB2CE,CFCECD,CD=4CF,故正确,错误,tanBAEBE:AB,BAE30°,故错误;设CFa,则BECE2a,ABCDAD4a,DF3a,AE2a,EFa,AF5a,ABEAEF90°,ABEAEF,故正确故选:B【点睛】此题考查了相似三角形的判定与性质,直角三角形的性质以及正方形的性质熟练掌握相似三角形的判定与性质是解题的关键4、C【分析】先根据APPC,可求PCA=90°-46°=44°,在RtPCA中,利用三角函数AP=米即可【详解】解:APPC,PCA+A=90°,A=46°,PCA=90°-46°=44°,在RtPCA中,tanPCA=,PC=50米,AP=米故选C【点睛】本题考查测量问题,掌握测量问题经常利用三角函数求边,熟悉锐角三角函数定义是解题关键5、A【分析】直接利用坡角的定义得出答案【详解】解:某水库大坝的横断面是梯形,其中一斜坡的坡度,设这个斜坡的坡角为,故,故故选:A【点睛】本题主要考查了解直角三角形的应用,解题的关键是根据题意正确得出坡角与坡比的关系6、D【分析】如图所示,过E点做CD平行线交AB线段为点H,标AB线段和CD线段相交点为G和H由坡度为i1:0.75,BC20可得BG=16,GC=12,由坡度为 i1:2.4,DE26可得DF=24,EF=10,分别在在中满足,在中满足化简联立得AB=25.6【详解】如图所示,过E点做CD平行线交AB线段为点H,标AB线段和CD线段相交点为G和H在中BC20,坡度为i1:0.75,在中DE26,坡度为 i1:2.4,在中满足,在中满足,即,其中BG=16、BG=12、BH=BG-EF=6、DF=24,代入化简得,令2-有,AB=25.6故选:D【点睛】本题考查了解直角三角形的应用,利用三角形的坡度和斜边长通过勾股定理可以求得三角形各边长度,再根据角度列含两个未知数的二元一次方程组,正确的列方程求解是解题的关键7、A【分析】根据直角三角形的两个锐角互余即可求得,根据特殊角的三角函数值即可求解【详解】C=90°,A=60°,又故选A【点睛】本题考查了直角三角形的两个锐角互余,求特殊角的三角函数值,理解特殊角的三角函数值是解题的关键8、C【分析】如图,在三角形中,等底等高的两个三角形的面积相等,由此可得三角形1面积=三角形2面积,三角形3面积=三角形4面积,根据两个大三角形的面积相等,即甲的面积加上三角形1和三角形3的面积等于乙的面积加上三角形2和三角形4的面积,即可求得甲的面积等于乙的面积【详解】解:如图,在三角形中,等底等高的两个三角形的面积相等,由此可得三角形1面积=三角形2面积,三角形3面积=三角形4面积,根据长方形的对边相等,则长方形对角线分成的两个三角形面积等相等,所以甲的面积加上三角形1和三角形3的面积等于乙的面积加上三角形2和三角形4的面积,则甲的面积等于乙的面积故选:C【点睛】此题考查了三角形的面积,等底等高的两个三角形的面积相等是解答此题的关键9、C【分析】过点O作OEAC于点F,延长BD交OE于点F,设DFx,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案【详解】解:过点O作OEAC于点F,延长BD交OE于点F,设DFx,tan65°,OFxtan65°,BF3+x,tan35°,OF(3+x)tan35°,2.1x0.7(3+x),x1.5,OF1.5×2.13.15,OE3.15+1.54.65,故选:C【点睛】本题考查了锐角三角函数解直角三角形的应用,根据题意构建直角三角形是解本题的关键10、D【分析】先求出ABC的面积,以及利用勾股定理求出,利用面积法求出,进而求解即可【详解】解:如图所示,过点B作BDAC于D,由题意得:,故选D【点睛】本题主要考查了勾股定理和求正弦值,解题的关键在于能够正确作出辅助线,构造直角三角形二、填空题1、【分析】由“ASA”可证ANODFO,可得ON=OF,由等腰三角形的性质可求AFO=45°;由外角的性质可求NAO=AQO由“AAS”可证OKGDFG,可得GO=DG;通过证明AHNOHA,可得,进而可得结论DP2=NHOH【详解】四边形ABCD是正方形,AO=DO=CO=BO,ACBD,AOD=NOF=90°,AON=DOF,OAD+ADO=90°=OAF+DAF+ADO,DFAE,DAF+ADF=90°=DAF+ADO+ODF,OAF=ODF,ANODFO (ASA),ON=OF,AFO=45°,故正确;如图,过点O作OKAE于K,CE=2DE,AD=3DE,tanDAE=,AF=3DF,ANODFO,AN=DF,NF=2DF,ON=OF,NOF=90°,OK=KN=KF=FN,DF=OK,又OGK=DGF,OKG=DFG=90°,OKGDFG (AAS),GO=DG,故正确;DAO=ODC=45°,OA=OD,AOH=DOP,AOHODOP (ASA),AH=DP,ANH=FNO=45°=HAO,AHN=AHO,AHNOHA,AH2=HOHN,DP2=NHOH,故正确;NAO+AON=ANQ=45°,AQO+AON=BAO=45°,NAO=AQO,即故错误综上,正确的是故答案为:【点睛】本题是四边形综合题,查了正方形的性质,全等三角形的判定和性质,锐角三角函数,等腰三角形的性质,相似三角形的判定和性质,灵活运用这些性质解决问题是解题的关键2、【分析】过A作AMBD于M,延长BD交于N,先通过导角证明ABD是等腰三角形,再由折叠得性质即可得到AM,则点A到直线的距离是MN,最后求出MN长度即可【详解】过A作AMBD于M,延长BD交于N,过D作DEBC于E将这张纸片沿直线翻折BN垂直平分,ABD是等腰三角形AMBD,AM点A到直线的距离是MN,DEBC在RtBCN中在RtDCN中解得即点A到直线的距离是故答案为:【点睛】本题考查等腰三角形的性质及判定、勾股定理、解直角三角形,能够想到点A到直线的距离是MN是解题的关键3、【分析】先求出特殊角的三角函数值,再计算即可【详解】解:=【点睛】本题考查了特殊角三角函数值的计算,解题关键是熟记特殊角三角函数值4、30°【分析】根据正切定义,先求出,再求出的度数即可【详解】解:在中, , ,故答案为:【点睛】本题考查了解直角三角形,掌握三角形两锐角之间、三边之间和边角之间的关系是解题的关键5、 【分析】(1)矩形ABCD中,由折叠可得DF=AD=3,在中,用勾股定理求得,即可求得矩形ABCD的面积;(2)由折叠可得,矩形ABCD中,四点共圆,故,设,在中,由勾股定理得: ,即可求的值.【详解】(1)矩形ABCD中,由折叠可得DF=AD=3,在中,矩形ABCD的面积=,故答案为:;(2)将沿DE折叠,使点A的对应点F恰好落在边BC上,矩形ABCD中,四点共圆,设,则,在中,由勾股定理得:,即,解得,=.故答案为:【点睛】本题考查了勾股定理、矩形的性质、锐角三角函数等知识,掌握相应的定理是解答此题的关键.三、解答题1、(1);(2),;【分析】(1)由特殊角的三角函数值、负整数指数幂、绝对值的意义进行化简,然后计算计算运算,即可得到答案;(2)先去括号,然后移项整理,再利用公式法解一元二次方程,即可得到答案【详解】解:(1)=;(2),;【点睛】本题考查了特殊角的三角函数值,负整数指数幂、绝对值的意义,解一元二次方程,解题的关键是掌握运算法则进行化简2、(1);(2)【分析】(1)过点作交于点,求出,比较与的大小可判断,根据可知,由两角及夹边即可确定;(2)当时,解直角三角形求出,即可【详解】(1)如图,过点作交于点,当时,有两种情况,即的长不唯一,故错误;当时,有一种情况,即的长唯一,故正确;当时,已知两角及夹边即可确定,的长唯一,故正确,故答案为:;(2)如图,过点作交于点,当时,【点睛】本题考查解直角三角形,三角函数的定义,勾股定理等知识,解题的关键是掌握基本知识,属于中考常考题型3、0【分析】根据特殊角三角函数值的混合计算法则求解即可【详解】解: 【点睛】本题主要考查了特殊角三角函数值的混合计算,熟知相关计算法则是解题的关键4、(1)60°,(2)3【分析】(1)根据特殊角三角函数值直接求解即可;(2)作ADBC于D,求出AD3,CD1,由三角函数定义即可得出答案【详解】解:(1)B为锐角且,B60°;(2)作ADBC于D,如图所示:,BDAB3,AD,BC4,BD3,CDBCBD1,tanC3【点睛】本题考查了解直角三角形、特殊锐角的三角函数值、三角函数定义等知识;熟练掌握直角三角形的性质和特殊锐角的三角函数值是解题的关键5、【分析】根据负整数指数幂,特殊角的三角函数值,零指数幂的运算法则求解即可【详解】解:【点睛】此题考查了负整数指数幂,特殊角的三角函数值,零指数幂运算,解题的关键是熟练掌握负整数指数幂,特殊角的三角函数值,零指数幂的运算法则