强化训练2022年河北唐山遵化市中考数学模拟真题-(B)卷(精选).docx
-
资源ID:32631445
资源大小:657.06KB
全文页数:22页
- 资源格式: DOCX
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
强化训练2022年河北唐山遵化市中考数学模拟真题-(B)卷(精选).docx
· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·2022年河北唐山遵化市中考数学模拟真题 (B)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、石景山某中学初三班环保小组的同学,调查了本班名学生自己家中一周内丢弃的塑料袋的数量,数据如下(单位:个),若一个塑料袋平铺后面积约为,利用上述数据估计如果将全班名同学的家庭在一周内共丢弃的塑料袋全部铺开,面积约为( )ABCD2、直线,按照如图所示的方式摆放,与相交于点,将直线绕点按照逆时针方向旋转 ()后,则的值为( )ABCD3、在解方程时,去分母正确的是( )ABCD4、点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:(1)ba0;(2)|a|b|;(3)a+b0;(4)0其中正确的是( )A(1)(2)B(2)(3)C(3)(4)D(1)(4)5、使分式有意义的x的取值范围是( )ABCD6、计算3.14-(-)的结果为( ) A6.28B2C3.14-D3.14+7、把 写成省略括号后的算式为 ( )ABCD8、是-2的( ) A相反数B绝对值C倒数D以上都不对9、如图所示,AB,CD相交于点M,ME平分,且,则的度数为( )ABCD10、有下列四种说法:· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·半径确定了,圆就确定了;直径是弦;弦是直径;半圆是弧,但弧不一定是半圆其中,错误的说法有()A1种B2种C3种D4种第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一元二次方程的根是 2、如图,是的弦,是上一点,交于点,连接,若,则的度数为_3、以下说法:两点确定一条直线;两点之间直线最短;若,则;若a,b互为相反数,则a,b的商必定等于其中正确的是_(请填序号)4、下列4个分式:; ;,中最简分式有_个5、若a、b互为相反数,c、d互为倒数,m的绝对值是1,则3a+3b -mcd=_.三、解答题(5小题,每小题10分,共计50分)1、某商场销售一种小商品,进货价为8元/件当售价为10元/件时,每天的销售量为100件在销售过程中发现:销售单价每上涨1元,每天的销售量就减少10件设销售单价为(元/件)(的整数),每天销售利润为(元)(1)直接写出与的函数关系式为:_;(2)若要使每天销售利润为270元,求此时的销售单价;(3)若每件该小商品的利润率不超过100%,且每天的进货总成本不超过800元,求该小商品每天销售利润的取值范围2、在数轴上,点A,B分别表示数a,b,且,记(1)求AB的值;(2)如图,点P,Q分别从点A,B;两点同时出发,都沿数轴向右运动,点P的速度是每秒4个单位长度,点Q的速度是每秒1个单位长度,点C从原点出发沿数轴向右运动,速度是每秒3个单位长度,运动时间为t秒请用含t的式子分别写出点P、点Q、点C所表示的数;当t的值是多少时,点C到点P,Q的距离相等?3、如图,是数轴的原点,、是数轴上的两个点,点对应的数是,点对应的数是,是线段上一点,满足(1)求点对应的数;(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,当点到达点后停留秒钟,然后继续按原速沿数轴向右匀速运动到点后停止在点从点出发的同时,动点从点出发,以每秒个单位长度的速度沿数轴匀速向左运动,一直运动到点后停止设点的运动时间为秒当时,求的值;在点,出发的同时,点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,当点与点相遇后,点立即掉头按原速沿数轴向右匀速运动,当点与点相遇后,点又立即掉头按原速沿数轴向左匀速运动到点后停止当时,请直接写出的值4、已知抛物线yx2+x(1)直接写出该抛物线的对称轴,以及抛物线与y轴的交点坐标;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(2)已知该抛物线经过A(3n+4,y1),B(2n1,y2)两点若n5,判断y1与y2的大小关系并说明理由;若A,B两点在抛物线的对称轴两侧,且y1y2,直接写出n的取值范围5、计算(1);(2);(3);(4)解方程:(5)先化简,再求值:已知,其中,-参考答案-一、单选题1、D【分析】先求出每一名学生自己家中一周内丢弃的塑料袋的数量的平均数,即可得到每名同学丢弃的塑料袋平铺后面积那么全班40名同学的家庭在一周内共丢弃的塑料袋全部铺开所占面积即可求出【详解】由题意可知:本班一名学生自己家中一周内丢弃的塑料袋的数量的平均数为=10个,则每名同学丢弃的塑料袋平铺后面积约为10×0.25m2=2.5,全班40名同学的家庭在一周内共丢弃的塑料袋全部铺开,面积约为40×2.5=100m2故选D【点睛】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法2、C【分析】先求出O的度数,再根据垂直的定义即可得到旋转的度数.【详解】解:根据三角形外角的性质可得O=140°-80°=60°,已知将直线绕点按照逆时针方向旋转 ()后,故n=90°-60°=30°.故选C.【点睛】本题考查三角形的相关知识,掌握三角形内角和定理和三角形外角的性质是解题关键.3、A【分析】在方程的左右两边同时乘10,即可作出判断【详解】解:去分母得:,故选:A【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·4、B【分析】根据图示,判断a、b的范围:3a0,b3,根据范围逐个判断即可.【详解】解:根据图示,可得3a0,b3,(1)ba0,故错误;(2)|a|b|,故正确;(3)a+b0,故正确;(4)0,故错误故选B【点睛】此题主要考查了绝对值的意义和有理数的运算符号的判断,以及数轴的特征和应用,要熟练掌握,解答此题的关键是判断出a、b的取值范围5、B【分析】根据分式有意义的条件,即分母不为零求出x的取值范围即可【详解】解:由题意得:,解得,故选:B【点睛】本题主要考查了分式有意义的条件,熟知分式有意义,即分母不为零是解题的关键6、D【分析】根据减去一个数等于加上这个数的相反数进行计算即可得解【详解】解: 3.14-(-)= 3.14+故选:D【点睛】本题考查减法运算,熟记减去一个数等于加上这个数的相反数是解题的关键7、D【分析】先把算式写成统一加号和的形式,再写成省略括号的算式即可【详解】把统一加号和,再把写成省略括号后的算式为 5-3+1-5故选:D【点睛】本题考查有理数加减法统一加法的问题,掌握加减法运算的法则,会用减法法则把减法装化为加法,会写省略括号的算式是解题关键8、D【分析】根据相反数、绝对值、倒数的定义进行解答即可【详解】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·解:,-2的相反数是2,-2的绝对值是2,-2的倒数是-,所以以上答案都不对.故选D【点睛】本题考查相反数、绝对值、倒数,掌握相反数、绝对值、倒数的定义是解题的关键9、C【分析】先求出,再根据角平分线的性质得到,由此即可求解【详解】解:,ME平分,故选C【点睛】本题主要考查了角平分线的性质,解题的关键在于能够熟练掌握相关知识进行求解10、B【分析】根据弦的定义、弧的定义、以及确定圆的条件即可解决【详解】解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确其中错误说法的是两个故选B【点睛】本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆二、填空题1、【详解】解:用因式分解法解此方程,即.故答案为:.【点睛】本题考查解一元二次方程.掌握解一元二次方程的方法,选择适合的方法可以简便运算2、· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·【分析】设AOC=x°,根据圆周角定理得到B的度数,根据三角形的外角的性质列出方程,解方程得到答案【详解】解:设AOC=x°,则B=x°,AOC=ODC+C,ODC=B+A,x=20°+30°+x, 解得x=100° 故选A【点睛】本题主要考查的是圆周角定理和三角形的外角的性质,掌握一条弧所对的圆周角等于这条弧所对的圆心角的一半是解题的关键3、【分析】分别利用直线的性质以及线段的性质和相反数、绝对值的性质分别分析得出答案【详解】两点确定一条直线,正确;两点之间直线最短,错误,应为两点之间线段最短;若,则,故错误;若a,b互为相反数,则a,b的商等于(a,b不等于0),故错误故答案为:.【点睛】此题主要考查了直线的性质以及线段的性质和相反数、绝对值,正确掌握相关定义是解题关键4、【分析】根据最简分式的定义逐式分析即可.【详解】是最简分式;=,不是最简分式 ;=,不是最简分式;是最简分式.故答案为2.【点睛】本题考查了最简分式的识别,与最简分数的意义类似,当一个分式的分子与分母,除去1以外没有其它的公因式时,这样的分式叫做最简分式.5、-1或1【分析】由a、b互为相反数,c、d互为倒数,m的绝对值是1得出a+b=0、cd=1,m=±1,代入计算即可【详解】解:a、b互为相反数,c、d互为倒数,m的绝对值是1,a+b=0、cd=1,m=±1,当m=1时,3a+3b -mcd=3(a+b)-mcd=0-1= -1,当m=-1时,3a+3b -mcd=3(a+b)-mcd=0-(-1)= 1故答案为:-1或1【点睛】本题考查相反数、倒数及绝对值的计算,掌握互为相反数的两数和为0、互为倒数的两数积为1是解题的关键三、解答题1、(1)(2)销售单价为或元· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(3)【分析】(1)销售单价为元/件时,每件的利润为元,此时销量为,由此计算每天的利润即可;(2)根据题意结合(1)的结论,建立一元二次方程求解即可;(3)首先求出利润不超过时的销售单价的范围,且每天的进货总成本不超过800元,再结合(1)的解析式,利用二次函数的性质求解即可(1)由题意得,与的函数关系式为:;(2)由题意得:,解得,销售单价为或元;(3)每件小商品利润不超过,得,小商品的销售单价为,由(1)得,对称轴为直线,在对称轴的左侧,且随着的增大而增大,当时,取得最大值,此时,当时,取得最小值,此时即该小商品每天销售利润的取值范围为【点睛】本题考查二次函数的实际应用问题,准确表示出题中的数量关系,熟练运用二次函数的性质求解是解题关键2、(1)(2)点所表示的数为,点所表示的数为,点所表示的数为;或【分析】(1)先根据绝对值的非负性求出的值,再代入计算即可得;(2)根据“路程=速度时间”、结合数轴的性质即可得;根据建立方程,解方程即可得(1)解:,解得,;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(2)解:由题意,点所表示的数为,点所表示的数为,点所表示的数为;,由得:,即或,解得或,故当或时,点到点的距离相等【点睛】本题考查了数轴、绝对值、一元一次方程的应用等知识点,熟练掌握数轴的性质是解题关键3、(1);(2),;或或5【分析】(1)设点C对应的数为c,先求出AC=c-(-1)=c+1,BC=8-c,根据,变形,即,解方程即可;(2)点M、N在相遇前,先求出点M表示的数:-1+2t,点N表示的数为:8-t,根据,列方程,点M、N相遇后,求出点M过点C,点M表示的数为-1+2(t-2)=-5+2t,根据,列方程,解方程即可;点P与点M相遇之前,MP小于2PN,点P与点M相遇后,点M未到点C,先求点P与点M首次相遇AM+CP=5,即2t+3t=5,解得t=1,确定点P与M,N位置,当时,列方程,当点P与点N相遇时,3(t-1)+t-1=7-1解得,此时点M在C位置,点N、P在8-t=8-2.5=5.5位置,点P掉头向C运动,点M在点C位置停止不等,根据当时,列方程5.5-3(t-2.5)-4=25.5-(t-2.5)-5.5-3(t-2.5),点P与点M再次相遇时,解得,点N与点M相遇时,8-t=4,解得,当点P到点A之后,当时,列方程,解方程即可(1)解:设点C对应的数为c,AC=c-(-1)=c+1,BC=8-c,即,解得;(2)解:点M、N在相遇前,点M表示的数:-1+2t,点N表示的数为:8-t,解得,点M、N相遇后,点M过点C,点M表示的数为-1+2(t-2)=-5+2t,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·,解得,MN=4时,或;点P与点M相遇之前,MP小于2PN,点P与点M相遇后,点M未到点C,点P与点M首次相遇AM+CP=5,即2t+3t=5,解得t=1,点M与点P在1位置,点N在7位置,点P掉头,PM=3(t-1)-2(t-1),PN=8-t-1-3 (t-1),当时,,解得,当点P与点N相遇时,3(t-1)+t-1=7-1,解得,此时点M在C位置,点N、P在8-t=8-2.5=5.5位置,点P掉头向C运动,点M在点C位置停止不等,当时,5.5-3(t-2.5)-4=25.5-(t-2.5)-5.5-3(t-2.5),解得;点P与点M再次相遇时,解得,点N与点M相遇时,8-t=4,解得,当点P到点A之后,当时,PM=2(t-2)-1-(-1)=2t-2,PN=8-t-(-1)=9-t,即,解得;综合得当时, 的值为或或5【点睛】本题考查数轴上动点问题,两点间的距离,列代数式,相遇与追及问题,列方程,分类考虑动点的位置,根据等量关系列方程是解题关键4、(1)直线x1,(0,0)(2)y1y2,理由见解析;1n【分析】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(1)由对称轴公式即可求得抛物线的对称轴,令x0,求得函数值,即可求得抛物线与y轴的交点坐标;(2)由n5,可得点A,点B在对称轴直线x1的左侧,由二次函数的性质可求解;(3)分两种情况讨论,列出不等式组可求解(1)yx2+x,对称轴为直线x1,令x0,则y0,抛物线与y轴的交点坐标为(0,0);(2)xAxB(3n+4)(2n1)n+5,xA1(3n+4)13n+33(n+1),xB1(2n1)12n22(n1)当n5时,xA10,xB10,xAxB0A,B两点都在抛物线的对称轴x1的左侧,且xAxB,抛物线yx2+x开口向下,在抛物线的对称轴x1的左侧,y随x的增大而增大y1y2;若点A在对称轴直线x1的左侧,点B在对称轴直线x1的右侧时,由题意可得,不等式组无解,若点B在对称轴直线x1的左侧,点A在对称轴直线x1的右侧时,由题意可得:,1n,综上所述:1n【点睛】本题考查了抛物线与y轴的交点,二次函数的性质,一元一次不等式组的应用,利用分类讨论思想解决问题是本题的关键5、(1)(2)(3)(4)(5);【分析】(1)(2)(3)根据有理数的混合运算进求解即可;(4)根据移项合并同类项解一元一次方程即可;(4)先去括号再合并同类项,再将的值代入求解即可(1)· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(2)(3)(4)解得(5)当,时,原式【点睛】本题考查了有理数的混合运算,解一元一次方程,整式加减的化简求值,正确的计算是解题的关键