人教版八年级数学下册第十八章-平行四边形专题训练试卷(无超纲).docx
-
资源ID:32632819
资源大小:636.76KB
全文页数:37页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
人教版八年级数学下册第十八章-平行四边形专题训练试卷(无超纲).docx
人教版八年级数学下册第十八章-平行四边形专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在ABCD中,添加以下哪个条件能判断其为菱形( )AABBCBBCCDCCDACDACBD2、如图所示,在 ABCD中,对角线AC,BD相交于点O,过点O的直线EF分别交AD于点E,BC于点F, ,则 ABCD的面积为( ) A24B32C40D483、如图,把矩形纸片沿对角线折叠,若重叠部分为,那么下列说法错误的是( )A是等腰三角形B和全等C折叠后得到的图形是轴对称图形D折叠后和相等4、如图,下列条件中,能使平行四边形ABCD成为菱形的是( )ABCD5、如图,四边形ABCD中,A=60°,AD=2,AB=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )ABCD6、如图,在长方形ABCD中,AB6,BC8,点E是BC边上一点,将ABE沿AE折叠,使点B落在点F处,连接CF,当CEF为直角三角形时,则BE的长是( )A4B3C4或8D3或67、若一个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为( )ABCD8、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )A梯形B菱形C矩形D正方形9、在锐角ABC中,BAC60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:NPMP;AN:ABAM:AC;BN2AN;当ABC60°时,MNBC,一定正确的有( )ABCD10、如图,在菱形中,P是对角线上一动点,过点P作于点E于点F若菱形的周长为24,面积为24,则的值为( )A4BC6D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABCD中,点E是对角线AC上一点,过点E作AC的垂线,交边AD于点P,交边BC于点Q,连接PC、AQ,若AC6,PQ4,则PCAQ的最小值为_2、如果一个矩形较短的边长为5cm,两条对角线的夹角为60°,则这个矩形的对角线长是_cm3、如图,矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE翻折至AFE,连接CF,则CF的长为_4、如图,菱形ABCD的对角线AC,BD相交于点O,E为DC的中点,若,则菱形的周长为_5、在菱形ABCD中,B60°,BC2cm,M为AB的中点,N为BC上一动点(不与点B重合),将BMN沿直线MN折叠,使点B落在点E处,连接DE,CE,当CDE为等腰三角形时,线段BN的长为_三、解答题(5小题,每小题10分,共计50分)1、如图:已知BCD是等腰直角三角形,且DCB90°,过点D作ADBC,使ADBC,在AD上取一点E,连结CE,点B关于CE的对称点为B1,连结B1D,并延长B1D交BA的延长线于点F,延长CE交B1F于点G,连结BG(1)求证:CBGCDB1;(2)若AEDE,BC10,求BG长;(3)在(2)的条件下,H为直线BG上一点,使HCG为等腰三角形,则所有满足要求的BH的长是 (直接写出答案)2、如图,在中,AE平分,于点E,点F是BC的中点(1)如图1,BE的延长线与AC边相交于点D,求证:(2)如图2,中,求线段EF的长3、如图,在平行四边形中,点在上由点向点出发,速度为每秒;点在边上,同时由点向点运动,速度为每秒当点运动到点时,点,同时停止运动连接,设运动时间为秒(1)当为何值时,四边形为平行四边形?(2)设四边形的面积为,求与之间的函数关系式(3)当为何值时,四边形的面积是四边形的面积的四分之三?求出此时的度数(4)连接,是否存在某一时刻,使为等腰三角形?若存在,请求出此刻的值;若不存在,请说明理由4、如图,将矩形沿折叠,使点落在边上的点处;再将矩形沿折叠,使点落在点处且过点(1)求证:四边形是平行四边形;(2)当是多少度时,四边形为菱形?试说明理由5、(1)如图1中,A90°,请用直尺和圆规作一条直线,把ABC分割成两个等腰三角形(不写作法,但须保留作图痕迹)(2)已知内角度数的两个三角形如图2、图3所示请你判断,能否分别画一条直线把它们分割成两个等腰三角形?若能,请画出直线,并标注底角的度数(3)一个三角形有一内角为48°,如果经过其一个顶点作直线能把其分成两个等腰三角形,那么它的最大的内角可能值为 -参考答案-一、单选题1、D【解析】【分析】根据对角线互相垂直的平行四边形是菱形,结合选项找到对角线互相垂直即可求解【详解】A、ABBC,ABC90°,又四边形ABCD是平行四边形,四边形ABCD是矩形;故选项A不符合题意;B、C选项,同A选项一样,均为邻边垂直,£ABCD是矩形;故选项B、C不符合题意;D、四边形ABCD是平行四边形,又ACBD,四边形ABCD是菱形;故选项D符合题意故选D【点睛】本题考查了菱形的判定,掌握菱形的判定定理是解题的关键2、B【解析】【分析】先根据平行四边形的性质可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,从而可得,然后根据平行四边形的性质即可得【详解】解:四边形是平行四边形,在和中,则的面积为,故选:B【点睛】本题考查了平行四边形的性质、三角形全等的判定定理与性质等知识点,熟练掌握平行四边形的性质是解题关键3、D【解析】【分析】根据题意结合图形可以证明EB=ED,进而证明ABECDE;此时可以判断选项A、B、D是成立的,问题即可解决【详解】解:由题意得:BCDBFD,DC=DF,C=F=90°;CBD=FBD,又四边形ABCD为矩形,A=F=90°,DEBF,AB=DF,EDB=FBD,DC=AB,EDB=CBD,EB=ED,EBD为等腰三角形;在ABE与CDE中,ABECDE(HL);又EBD为等腰三角形,折叠后得到的图形是轴对称图形;综上所述,选项A、B、C成立,不能证明D是正确的,故说法错误的是D,故选:D【点睛】本题主要考查了翻折变换及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图中隐含的等量关系;借助矩形的性质、全等三角形的判定等几何知识来分析、判断、推理或解答4、C【解析】【分析】根据菱形的性质逐个进行证明,再进行判断即可【详解】解:A、ABCD中,本来就有AB=CD,故本选项错误;B、ABCD中本来就有AD=BC,故本选项错误;C、ABCD中,AB=BC,可利用邻边相等的平行四边形是菱形判定ABCD是菱形,故本选项正确;D、ABCD中,AC=BD,根据对角线相等的平行四边形是矩形,即可判定ABCD是矩形,而不能判定ABCD是菱形,故本选项错误故选:C【点睛】本题考查了平行四边形的性质,菱形的判定的应用,注意:菱形的判定定理有:有一组邻边相等的平行四边形是菱形,四条边都相等的四边形是菱形,对角线互相垂直的平行四边形是菱形5、A【解析】【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN,从而求得EF的最大值 连接DB,过点D作DHAB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;【详解】解:ED=EM,MF=FN, EF=DN, DN最大时,EF最大, N与B重合时DN=DB最大,在RtADH中, A=60° AH=2×=1,DH=,BH=ABAH=31=2, DB=, EFmax=DB=, EF的最大值为故选A【点睛】本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF=DN是解题的关键6、D【解析】【分析】当为直角三角形时,有两种情况:当点F落在矩形内部时连接,先利用勾股定理计算出,根据折叠的性质得,而当为直角三角形时,只能得到,所以点A、F、C共线,即沿折叠,使点B落在对角线上的点F处,则,可计算出然后利用勾股定理求解即可;当点F落在边上时此时为正方形,由此即可得到答案【详解】解:当为直角三角形时,有两种情况:当点F落在矩形内部时,如图所示连接,在中,ABE沿折叠,使点B落在点F处,BE=EF,当为直角三角形时,只能得到,点A、F、C共线,即ABE沿折叠,使点B落在对角线上的点F处,设BE=EF=x,则EC=BC-BE=8-x,解得,BE=3;当点F落在边上时,如图所示,由折叠的性质可知AB=AF,BE=EF,AEF=B=90°,FEC=90°,为正方形,综上所述,BE的长为3或6故选D【点睛】本题考查折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等也考查了矩形的性质,正方形的性质与判定以及勾股定理解题的关键是要注意本题有两种情况,需要分类讨论,避免漏解7、B【解析】【分析】根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积【详解】解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2一个直角三角形的周长为3+,AB+BC=3+-2=1+等式两边平方得(AB+BC)2= (1+) 2,即AB2+BC2+2ABBC=4+2,AB2+BC2=AC2=4,2ABBC=2,ABBC=,即三角形的面积为×ABBC=故选:B【点睛】本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出ACBC的值是解此题的关键,值得学习应用8、B【解析】【分析】根据题意得到,然后根据菱形的判定方法求解即可【详解】解:由题意可得:,四边形是菱形故选:B【点睛】此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法菱形的判定定理:四条边都相等四边形是菱形;一组邻边相等的平行四边形是菱形;对角线垂直的平行四边形是菱形9、C【解析】【分析】利用直角三角形斜边上的中线的性质即可判定正确;利用含30度角的直角三角形的性质即可判定正确,由勾股定理即可判定错误;由等边三角形的判定及性质、三角形中位线定理即可判定正确【详解】CM、BN分别是高CMB、BNC均是直角三角形点P是BC的中点PM、PN分别是两个直角三角形斜边BC上的中线故正确BAC=60ABN=ACM=90BAC=30AB=2AN,AC=2AMAN:AB=AM:AC=1:2即正确在RtABN中,由勾股定理得:故错误当ABC=60时,ABC是等边三角形CMAB,BNACM、N分别是AB、AC的中点MN是ABC的中位线MNBC故正确即正确的结论有故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键10、A【解析】【分析】连接BP,通过菱形的周长为24,求出边长,菱形面积为24,求出的面积,然后利用面积法,即可求出的值【详解】解:如图所示,连接BP,菱形ABCD的周长为24,又菱形ABCD的面积为24, ,故选:A【点睛】本题主要考查菱形的性质,解题关键在于添加辅助线,通过面积法得出等量关系二、填空题1、【解析】【分析】利用平行四边形的知识,将的最小值转化为的最小值,再利用勾股定理求出MC的长度,即可求解;【详解】过点A作且,连接MP,四边形是平行四边形,将的最小值转化为的最小值,当M、P、C三点共线时,的最小,在中,;故答案是:【点睛】本题主要考查了平行线的判定与性质,勾股定理,准确计算是解题的关键2、10【解析】【分析】如图,由题意得:四边形为矩形,证明是等边三角形,结合矩形的性质可得答案.【详解】解:如图,由题意得:四边形为矩形, 是等边三角形, 故答案为:【点睛】本题考查的是等边三角形的判定与性质,矩形的性质,掌握“矩形的对角线相等且互相平分”是解本题的关键.3、3.6【解析】【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到BFC=90°,根据勾股定理求出答案【详解】解:连接BF,BC6,点E为BC的中点,BE3,又AB4,AE ,BH,则BF,点E为BC的中点,BEEC,ABE沿AE翻折至AFE,FEBE,FEBE= EC,CBF=EFB,BCF=EFC,2EFB+2EFC=180°,EFB+EFC=90°BFC90°,CF故答案为:3.6【点睛】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键4、16【解析】【分析】由菱形的性质和三角形中位线定理即可得菱形的边长,从而可求得菱形的周长【详解】四边形ABCD是菱形,且对角线相交于点O点O是AC的中点E为DC的中点OE为CAD的中位线AD=2OE=2×2=4菱形的周长为:4×4=16故答案为:16【点睛】本题考查了菱形的性质及三角形中位线定理、菱形周长等知识,掌握这些知识是解答本题的关键5、cm或2cm【解析】【分析】分两种情况:如图1,当DE=DC时,连接DM,作DGBC于G,由菱形的性质得出AB=CD=BC=2,ADBC,ABCD,得出DCG=B=60°,A=120°,DE=AD=2,求出DG=,CG=1,BG=BC+CG=3,由折叠的性质得:EN=BN,EM=BM=AM,MEN=B=60°,证明ADMEDM,得出A=DEM=120°,证出D、E、N三点共线,设BN=EN=x,则GN=3-x,DN=x+2,在RtDGN中,由勾股定理得出方程,解方程即可;如图2,当CE=CD上,CE=CD=AD,此时点E与A重合,N与点C重合,CE=CD=DE=DA,CDE是等边三角形,BN=BC=2(含CE=DE这种情况).【详解】解:分两种情况,如图1,当DE=DC时,连接DM,作DGBC于G, 四边形ABCD是菱形,AB=CD=BC=2,ADBC,ABCD,DCG=B=60°,A=120°,DE=AD=2,DGBC,CDG=90°-60°=30°,CG=CD=1,DG=CG=,BG=BC+CG=3,M为AB的中点,AM=BM=1,由折叠的性质得:EN=BN,EM=BM=AM,MEN=B=60°,在ADM和EDM中,ADED,AMEM ,DMDM,ADMEDM(SSS),A=DEM=120°,MEN+DEM=180°,D、E、N三点共线,设BN=EN=x,则GN=3-x,DN=x+2,在RtDGN中,由勾股定理得:,解得:x=,即BN=cm;当CE=CD时,CE=CD=AD,此时点E与A重合,N与点C重合,如图2所示:CE=CD=DE=DA,CDE是等边三角形,BN=BC=2cm(符合题干要求);综上所述,当CDE为等腰三角形时,线段BN的长为cm或2cm;故答案为cm或2cm【点睛】本题考查了折叠变换的性质、菱形的性质、全等三角形的判定与性质、三点共线、勾股定理、直角三角形的性质、等腰三角形的性质等知识,熟练掌握并灵活运用是解题的关键.三、解答题1、(1)证明过程见解析;(2)BG的长为4;(3)2或64或或6+4【分析】(1)连结BB1交CG于点M,交CD于点Q,证明四边形ABCD是正方形,再根据对称的性质得到CE垂直平分BB1,得到BCGB1CG(SSS),即可得解;(2)设BG交AD于点N,得到BCQCDE(ASA),得到CQDE5,BQCE5,再根据勾股定理得到BM,最后利用勾股定理计算即可;(3)根据点G的位置不同分4种情况进行讨论计算即可;【详解】(1)证明:如图1,连结BB1交CG于点M,交CD于点Q,ADBC,ADBC,四边形ABCD是平行四边形,BCDC,BCD90°,四边形ABCD是正方形,点B1与点B关于CE对称,CE垂直平分BB1,BCB1C,BGB1G,CGCG,BCGB1CG(SSS),CBGCB1G,DCB1C,CDB1CB1G,CBGCDB1(2)解:如图1,设BG交AD于点N,BCCDAD10,DEAD5,CDE90°,CE,BCQCDEBMC90°,CBQ90°BCMDCE,BCQCDE(ASA),CQDE5,BQCE5,CMBQ,SBCQBQCMBCCQ,CM2,BM,ABCBAN90°,GDN+CDB190°,ABN+CBG90°,GDNABN,GNDANB,GDN+GNDABN+ANB90°,BGB190°,BGMB1GMBGB145°,BMG90°,BMGBGM45°,GMBM4,BG,BG的长为4(3)解:如图1,由(2)得CM2,GM4,CG2+46,如图2,CHCG6,则CHGCGH45°,GCH90°,GH,BHGHBG642;如图3,HGCG6,且点H与点B在直线FB1的同侧,BHHGBG64;如图4,CHGH,则HCGHGC45°,CHG90°,CH2+GH2CG2,2GH2(6)2,GH3,BHBGGH43;如图5,HGCG6,且点H与点B在直线FB1的异侧,BHHG+BG6+4,综上所述,BH的长为2或64或或6+4,故答案为:2或64或或6+4【点睛】本题主要考查了全等三角形的综合,勾股定理,垂直平分线的判定与性质,正方形的性质,准确分析计算是解题的关键2、(1)见解析;(2)2【分析】(1)利用ASA定理证明AEBAED,得到BE=ED,AD=AB,根据三角形中位线定理解答;(2)分别延长BE、AC交于点H,仿照(1)的过程解答【详解】解:(1)证明:AE平分,BAE=DAE,AEB=AED=90°,在AEB和AED中,AEBAED(ASA)BE=ED,AD=AB,点F是BC的中点,BF=FC,EF是BCD的中位线,EF=CD=(AC-AD)=(AC-AB);(2)解:分别延长BE、AC交于点H,AE平分,BAE=DAE,AEB=AED=90°,在AEB和AEH中,AEBAEH(ASA)BE=EH,AH=AB=9,点F是BC的中点,BF=FC,EF是BCD的中位线,EF=CH=(AH-AC)=2【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键3、(1);(2)yS四边形ABPQ2t32(0t8);(3)t8,;(4)当t4或 或时,为等腰三角形,理由见解析【分析】(1)利用平行四边形的对边相等AQBP建立方程求解即可;(2)先构造直角三角形,求出AE,再用梯形的面积公式即可得出结论;(3)利用面积关系求出t,即可求出DQ,进而判断出DQPQ,即可得出结论;(4)分三种情况,利用等腰三角形的性质,两腰相等建立方程求解即可得出结论【详解】解:(1)在平行四边形中,由运动知,AQ16t,BP2t,四边形ABPQ为平行四边形,AQBP,16t2tt,即:ts时,四边形ABPQ是平行四边形;(2)过点A作AEBC于E,如图,在RtABE中,B30°,AB8,AE4,由运动知,BP2t,DQt,四边形ABCD是平行四边形,ADBC16,AQ16t,yS四边形ABPQ(BPAQ)AE(2t16t)×42t32(0t8);(3)由(2)知,AE4,BC16,S四边形ABCD16×464,由(2)知,yS四边形ABPQ2t32(0t8),四边形ABPQ的面积是四边形ABCD的面积的四分之三2t32×64,t8;如图,当t8时,点P和点C重合,DQ8,CDAB8,DPDQ,DQCDPQ,DB30°,DQP75°;(4)当ABBP时,BP8,即2t8,t4;当APBP时,如图,B30°,过P作PM垂直于AB,垂足为点M,BM4,解得:BP,2t,t当ABAP时,同(2)的方法得,BP,2t,t所以,当t4或 或时,ABP为等腰三角形【点睛】此题是四边形综合题,主要考查了平行四边形的性质,含30°的直角三角形的性质,等腰三角形的性质,解(1)的关键是利用AQBP建立方程,解(2)的关键是求出梯形的高,解(3)的关键是求出t,解(4)的关键是分类讨论的思想思考问题4、(1)见解析;(2)当B1FE=60°时,四边形EFGB为菱形,理由见解析【分析】(1)由题意,结合,得,同理可得,即,结合,依据平行四边形的判定定理即可证明四边形BEFG是平行四边形;(2)根据菱形的性质可得,结合(1)中结论得出为等边三角形,依据等边三角形的性质及(1)中结论即可求出角的大小【详解】证明:(1),又,同理可得:,又,四边形BEFG是平行四边形;(2)当时,四边形EFGB为菱形理由如下:四边形BEFG是菱形,由(1)得:,为等边三角形,【点睛】题目主要考查平行四边形和菱形的判定定理和性质,矩形的折叠问题,等边三角形的性质,熟练掌握特殊四边形的判定和性质是解题关键5、(1)见解析;(2)见解析;(3)108°【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,作BC的垂直平分线即可确定点E,连接AE即可;(2)分别以24°为底角,可分割出两个等腰三角形;(3)利用图1、2、3中三角形内角之间的关系进行判断【详解】解:(1)如图,作BC的垂直平分线交BC于E,连接AE,则直线AE即为所求;(2)如图:(3)根据(1)(2)中三个角之间的关系可知:当三角形是直角三角形时,肯定可以分割成两个等腰三角形,此时最大角为90°;当一个角是另一个三倍时,也肯定可以分割成两个等腰三角形,此时最大角为99°;如图3,此时最大角为108°综上所述:最大角为108°,故答案为:108°【点睛】本题主要考查垂直平分线的尺规作图、直角三角形斜边中线定理及等腰三角形的性质,熟练掌握垂直平分线的尺规作图、直角三角形斜边中线定理及等腰三角形的性质是解题的关键