难点解析北师大版八年级数学下册第六章平行四边形专题训练练习题(名师精选).docx
-
资源ID:32636795
资源大小:466.80KB
全文页数:26页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
难点解析北师大版八年级数学下册第六章平行四边形专题训练练习题(名师精选).docx
北师大版八年级数学下册第六章平行四边形专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系中,找一点D,使得以点A、B、C、D为顶点的四边形是平行四边形,则点D的坐标不可能是( )ABCD2、如图,四边形ABCD中,ADBC,点P是对角线BD的中点,E、F分别是AB、CD的中点,若EPF130°,则PEF的度数为()A25°B30°C35°D50°3、已知正多边形的一个外角等于40°,则这个正多边形的内角和的度数为_A360°B1260°C1120°D1160°4、如图,四边形ABCD中,A=60°,AD=2,AB=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )ABCD5、若一个多边形的外角和与它的内角和相等,则这个多边形是( )A三角形B四边形C五边形D六边形6、在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是( )A(7,3)B(8,2)C(3,7)D(5,3)7、一个正多边形的内角和是540°,则该正多边形的一个外角的度数为( )A45°B55°C60°D72°8、已知正边形的每一个内角都是144°,则的值是()A12B10C8D69、如图,一只蚂蚁从点A出发沿直线前进5m,到达点B后,向左转角度,再沿直线前进5m,到达点C后,又向左转角度,照这样爬下去,第一次回到出发点,蚂蚁共爬了60m,则每次向左转的度数为( )A30B36C40D6010、如图,在平行四边形中,于点,把以点为中心顺时针旋转一定角度后,得到,已知点在上,连接若,则的大小为( )A140°B155°C145°D135°第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平行四边形ABCD中,B45°,AD8,E、H分别为边AB、CD上一点,将ABCD沿EH翻折,使得AD的对应线段FG经过点C,若FGCD,CG4,则EF的长度为 _2、若某多边形从一个顶点所作的对角线为4条,则这个多边形共有_条对角线3、如图,是第四套人民币1角硬币,该硬币边缘镌刻的正多边形的外角的度数为_°4、如图,是三角形ABC的不同三个外角,则_5、如图所示,在ABC中,BCAC,点D在BC上,DCAC10,且,作ACB的平分线CF交AD于点F,CF8,E是AB的中点,连接EF,则EF的长为_三、解答题(5小题,每小题10分,共计50分)1、已知一个多边形的边数为(1)若,求这个多边形的内角和(2)若这个多边形的内角和的比一个四边形的外角和多,求的值2、如图,已知,以为直径的半交于,交于,求的度数3、(问题情景)课外兴趣小组活动时,老师提出了如下问题:如图1,在ABC中,若AB10,AC6,求BC边上的中线AD的取值范围小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DEAD,连接BE请根据小明的方法思考:(1)由已知和作图能得到ADCEDB,其依据是 ,请选择正确的一项ASSS;BSAS;CAAS;DHL(2)由“三角形的三边关系”可求得AD的取值范围是 (初步运用)(3)如图2,在四边形ABCD中,ABCD,点E是BC的中点,若AE是BAD的平分线,试猜想线段AB,AD,DC之间的数量关系,并证明你的猜想(灵活运用)(4)如图3,AD是ABC的中线,BE交AC于E,交AD于F,且AEEF,若EF5,EC3,求线段BF的长;(拓展延伸)(5)如图4,CB是AEC的中线,CD是ABC的中线,且ABAC,下列四个选项中:AACDBCD BCE2CD CBCDBCE DCDCB所有正确选项的序号是 4、如图1,在等边中,点D,E分别在边上,连接,点M,P,N分别为的中点 (1)观察猜想:图1中,线段与的数量关系是 , ;(2)探究证明:把绕点A逆时针方向旋转到图2的位置,连接,则上面题(1)中的两个结论是否依然成立,并说明理由;(3)拓展延伸:把绕点A在平面内自由旋转,若,请直接写出周长的最大值5、如图,在ABC中,点A(3,1),B(1,1),C(0,3)(1)将ABC绕点O顺时针旋转90°,点A,B,C的对应点A1,B1,C1均落在格点上,画出旋转后的A1B1C1,并直接写出点A1,B1,C1的坐标;(2)将ABC绕点A旋转后,B,C对应点B2,C2均落在格点上,画出旋转后的AB2C2,并直接写出点B2,C2的坐标;(3)若线段B1C1绕某点旋转后恰好与线段B2C2重合,直接写该点的坐标为 -参考答案-一、单选题1、D【分析】根据题意结合平行四边形的性质画出图形进行分析即可解决问题,得出满足条件的点D有三个【详解】解:如图所示:观察图象可知,满足条件的点D有三个,坐标分别为(2,4)或(-4,2)或(0,-4),点D的坐标不可能是(-3,2).故选:D【点睛】本题考查平行四边形的判定以及平面直角坐标系与图形的性质等知识,解题的关键是正确画出图形,利用图象法解决问题2、A【分析】根据三角形的中位线定理,可得 ,从而PE=PF,则有PEF=PFE,再根据三角形的内角和定理,即可求解【详解】解:点P是对角线BD的中点,E、F分别是AB、CD的中点, ,ADBC,PE=PF,PEF=PFE,EPF130°, 故选:A【点睛】本题主要考查了三角形的中位线定理,等腰三角形的性质,三角形的内角和定理,熟练掌握三角形的中位线定理是解题的关键3、B【分析】根据正多边形的内角和计算即可;【详解】正n边形的每个外角相等,且其和是,;故选B【点睛】本题主要考查了正多边形的外角和与内角和,准确计算是解题的关键4、A【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN,从而求得EF的最大值 连接DB,过点D作DHAB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;【详解】解:ED=EM,MF=FN, EF=DN, DN最大时,EF最大, N与B重合时DN=DB最大,在RtADH中, A=60° AH=2×=1,DH=,BH=ABAH=31=2, DB=, EFmax=DB=, EF的最大值为故选A【点睛】本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF=DN是解题的关键5、B【分析】任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可【详解】解:设多边形的边数为n根据题意得:(n2)×180°360°,解得:n4故选:B【点睛】本题主要考查的是多边形的内角和和外角和,掌握任意多边形的外角和为360°和多边形的内角和公式是解题的关键6、A【分析】利用平行四边形的对边平行且相等的性质,先利用对边平行,得到D点和C点的纵坐标相等,再求出CD=AB=5,得到C点横坐标,最后得到C点的坐标【详解】解: 四边形ABCD为平行四边形。且。C点和D的纵坐标相等,都为3A点坐标为(0,0),B点坐标为(5,0), D点坐标为(2,3),C点横坐标为, 点坐标为(7,3)故选:A【点睛】本题主要是考察了平行四边形的性质、利用线段长求点坐标,其中,熟练应用平行四边形对边平行且相等的性质,是解决与平行四边形有关的坐标题的关键7、D【分析】设正多边形的边数为n,则根据内角和为540°可求得边数n,从而可求得该正多边形的一个外角的度数【详解】设正多边形的边数为n,则由题意得:180(n2)=540解得:n=5即此正多边形为正五边形,其一个外角为360°÷5=72°故选:D【点睛】本题考查了多边形的内角和与多边形的外角和,掌握多边形的内角和与外角定理是关键8、B【分析】根据多边形的内角和公式和已知得出144°n(n2)×180°,解方程即可【详解】解:根据题意得:144°n(n2)×180°,解得:n10,故选:B【点睛】本题考查了多边形的内角和定理,能根据题意得出方程144°n(n2)×180°是解此题的关键9、A【分析】蚂蚁第一次回到出发点,爬行路线是一个多边形,是这个多边形的外角,根据正多边形的外角和定理即可得出答案【详解】解:蚂蚁爬行路线是一个多边形,边数是,由于每个外角都相等,所以 ,故选:A【点睛】本题主要考查正多边形外角和定理,解题关键是要牢记多边形的外角和为360°10、C【分析】根据题意求出ADF,根据平行四边形的性质求出ABC、BAE,根据旋转变换的性质、结合图形计算即可【详解】解:ADC=70°,CDF=15°,ADF=55°,四边形ABCD是平行四边形,ABC=ADC=70°,ADBC,BFD=125°,AEBC,BAE=20°,由旋转变换的性质可知,BFG=BAE=20°,DFG=DFB+BFG=145°,故选:C【点睛】本题考查的是平行四边形的性质、旋转变换的性质,掌握旋转前、后的图形全等是解题的关键二、填空题1、【分析】延长CF与AB交于点M,由平行四边形的性质得BC长度,GMAB,由折叠性质得GF,EFM,进而得FM,再根据EFM是等腰直角三角形,便可求得结果【详解】解:延长CF与AB交于点M,FGCD,ABCD,CMAB,B=45°,BC=AD=8,CM=4,由折叠知GF=AD=8,CG=4,MF=CM-CF=CM-(GF-CG)=4-4,EFC=A=180°-B=135°,MFE=45°,EF=MF=(4-4)=8-4故答案为:8-4【点睛】本题主要考查了平行四边形的性质,折叠的性质,解直角三角形的应用,关键是作辅助线构造直角三角形2、14【分析】根据对角线的概念,知一个多边形从一个顶点出发有(n3)条对角线,求出n的值,再根据多边形对角线的总数为n(n3),即可解答【详解】解:从某个多边形的一个顶点出发一共画出4条对角线,n34,n7,那么这个多边形对角线的总条数为:×7×(73)14故答案为:14【点睛】本题考查了多边形的对角线,解决本题的关键是熟记对角线条数的公式3、40°【分析】先判断是正多边形的边数,再根据正多边形的性质外角都相等,利用外角和÷边数求解即可【详解】解:硬币边缘镌刻的正多边形是正九边形,外角和360°,该硬币边缘镌刻的正多边形的外角的度数为360°÷9=40°,故答案为:40【点睛】本题考查正多边形的外角,掌握正多边形的识别,多边形外角和,正多边形外角性质是解题关键4、360°【分析】利用三角形的外角和定理解答【详解】解:是三角形ABC的不同三个外角,三角形的外角和为360°,1+2+3=360°,故答案为:360°【点睛】本题主要考查了三角形的外角和定理,三角形的外角的性质,属于中考常考题型5、4【分析】根据等腰三角形的性质得到F为AD的中点,CFAD,根据勾股定理得到DF=6,根据三角形的中位线定理即可得到结论【详解】解:DC=AC=10,ACB的平分线CF交AD于F,F为AD的中点,CFAD,CFD=90°,DC=10,CF=8,DF=6,AD=2DF=12,BD=8,点E是AB的中点,EF为ABD的中位线,EF=BD=4,故答案为:4【点睛】本题考查了三角形的中位线定理,等腰三角形的性质,勾股定理,证得EF是ABD的中位线是解题的关键三、解答题1、(1);(2)12【分析】(1)把,代入多边形内角和公式求解即可;(2)根据多边形内角和公式及多边形外角和为,列出一元一次方程求解即可【详解】解:(1)当时,这个多边形的内角和为.(2)由题意,得,解得:,的值为12【点睛】本题考查了多边形的内角和与外角和问题及一元一次方程应用,解题的关键是牢记多边形的内角和与外角和2、【分析】先证明为的中位线,则证明再求解证明再利用三角形的内角和定理及平角的定义,从而可得答案.【详解】解: , 为的中位线, 【点睛】本题考查的是圆的基本性质,三角形中位线的定义与性质,三角形的内角和定理的应用,等腰三角形的性质,熟练的运用以上知识解题是关键.3、(1)B,(2)2AD8,(3)ADAB+DC;证明见解析,(4)8(5)B、C【分析】(1)根据全等三角形的判定定理解答;(2)根据三角形的三边关系计算;(3)延长AE交DC延长线于点M,类似(1)证明三角形全等,根据全等三角形的性质解答;(4)延长AD到M,使ADDM,连接BM,证明ADCMDB,根据全等三角形的性质解答;(5)根据三角形的中线的概念、等腰三角形的性质、三角形的中位线定理以及全等三角形的判定和性质进行分析判断【详解】解:(1)在ADC和EDB中,ADCEDB(SAS),故选:B;(2)由(1)得:ADCEDB,ACBE6,在ABE中,ABBEAEAB+BE,即1062AD10+6,2AD8,故答案为:2AD8;(3)ADAB+DC;延长AE交DC延长线于点N, 点E是BC的中点,CEBE,ABCD,NCEABE,在NCE和ABE中,NCEABE(SAS),CNAB,BAEN,AE是BAD的平分线,BAEDAE,EADN,ADDNAB+DC; (4)延长AD到M,使ADDM,连接BM,如图所示:AEEFEF5,ACAE+EC5+38,AD是ABC中线,CDBD,在ADC和MDB中,ADCMDB(SAS),BMAC,CADM,AEEF,CADAFE,AFEBFD,BFDCADM,BFBMAC8;(5)取CE的中点F,连接BFABBE,CFEF,BFAC,BF0.5ACCBFACBACAB,ACBABCCBFDBC又CD是三角形ABC的中线,ACAB2BDBDBF又BCBC,BCDBCF,CFCDBCDBCECE2CD故B、C选项正确若要ACDBCE,则需ACBDCE,又ACBABCBCE+EDCE,则需EBCD根据全等,得BCDBCE,则需EBCE,则需BCBE,显然不成立,故A选项错误;若要CDCB,则需ABCD,也不一定成立,故D选项错误;故答案为:B、C【点睛】本题以阅读为背景考查了三角形的全等和四边形等知识,解题的关键是通过辅助线构造全等三角形4、(1),;(2)成立,见解析;(3)【分析】(1)利用三角形的中位线定理以及平行线的性质解决问题即可;(2)证明ABDACE(SAS),推出BD=CE,再利用三角形的中位线定理解决问题即可;(3)首先证明点D恰好在BA延长线上时,PM 、PN的最大值为7,再利用30度角的直角三角形的性质以及勾股定理,求出M N的长度即可解决问题【详解】解:(1)ABC是等边三角形,AB=AC,A=60°,AD=AE,AB-AD=AC-AE,即BD=CE,M,P,N分别是DE,DC,BC的中点,MP=EC,PMEC,PN=BD,PNBD,PM=PN,MPD=ACD,NPD=ADC,在ACD中,ADC+ACD=180°-A=120°,MPN=MPD+NPD=120°故答案为:PM=PN,120°;(2)成立,理由如下:AB=AC,AD=AE,BAC=DAE=60°,ABC=ACB=60°,BAD=CAE,AB=AC,BAD=CAE,AD=AE,ABDACE(SAS),BD=CE,DM=ME,DP=PC,BN=NC,MP=EC,PMEC,PN=BD,PNBD,MP=PN,PMN是等腰三角形PMCE,DPM=DCE,PNBD,PNC=DBC,DPN=DCB+PNC=DCB+DBC,MPN=DPM+DPN=DCE+DCB+DBC=BCE+DBC=ACB+ACE+DBC=ACB+ABD+DBC=ACB+ABC,BAC=60°,ACB+ABC=120°,MPN=120°,PM=PN,MPN=120°;(3)由(2)知:PM=PN,MPN=120°,BDAB+AD,BD14,点D恰好在BA延长线上时,BD、CE取得最大值,且最大值为14,PM 、PN的最大值为7,此时MN经过点A,即MN垂直平分BC,如图:ABC、ADE是等边三角形,且AD=4,AB=10,BAN=DAM=30°,BN=CN=5,DM=EM=2, AN=5,AM=2,PMN周长的最大值为PM+PN+MN=7+7+5+2=14+7【点睛】本题属于几何变换综合题,考查了等边三角形的性质,全等三角形的判定和性质,三角形的中位线定理,三角形的面积等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题5、(1)图见解析,A1(-1,3),B1(1,-1),C1(3,0);(2)图见解析,B2(-1,-5),C2(1,-4);(3)D(1,)【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可解决问题;(2)分别作出A,B,C的对应点A2,B2,C2即可解决问题;(3)画出图形,根据中点坐标计算写出即可【详解】(1)如图A1B1C1就是ABC绕点O顺时针旋转90°后的图形,A1(-1,3),B1(1,-1),C1(3,0);(2)如图:将ABC绕点A顺时针旋转90°后,由于B,C的对应点B2,C2均落在格点上,则AB2C2,是符合要求旋转后的图形, B2(-1,-5),C2(1,-4);(3)当线段B1C1绕点D(1,)旋转时,则B1C1与B2C2重合,如图,连接,可得,四边形为平行四边形,连接交于点D,点D为的中点,【点睛】本题考查旋转变换,平行四边形的判定与性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型