最新人教版九年级数学下册第二十八章-锐角三角函数单元测试试题(含详解).docx
-
资源ID:32637411
资源大小:847.81KB
全文页数:37页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
最新人教版九年级数学下册第二十八章-锐角三角函数单元测试试题(含详解).docx
人教版九年级数学下册第二十八章-锐角三角函数单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,为测量小明家所住楼房的楼高,小明从楼底A出发先沿水平方向向左行走到达点C,再沿坡度的斜坡行走104米到达点D,在D处小明测得楼底点A处的俯角为,楼顶最高处B的仰角为,所在的直线垂直于地面,点A、B、C、D在同一平面内,则的高度约为( )米(参考数据:,)A104B106C108D1102、如图,ABC的顶点是正方形网格的格点,则sinACB的值为()A3BCD3、在RtABC中,C =90°,sinA=,则cosA的值等于( )ABCD4、如图,等腰RtABC中,C90°,AC5,D是AC上一点,若tanDBA,则AD()A1B2CD25、如图,在RtABC中,ABC90°,BD是AC边上的高,则下列选项中不能表示tanA的是()ABCD6、某人沿坡度的斜坡向上前进了10米,则他上升的高度为( )A5米BCD7、如图,一艘轮船在小岛A的西北方向距小岛海里的C处,沿正东方向航行一段时间后到达小岛A的北偏东的B处,则该船行驶的路程为( )A80海里B120海里C海里D海里8、如图,AB是的直径,点C是上半圆的中点,点P是下半圆上一点(不与点A,B重合),AD平分交PC于点D,则PD的最大值为( )A B C D9、如图,在网格中,小正方形的边长均为1,点A、B、C都在格点上,则的正弦值是( )A2BCD10、cos60°的值为()ABCD1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,菱形ABCD中,ABC=120°,AB=1,延长CD至A1,使DA1=CD,以A1C为一边,在BC的延长线上作菱形A1CC1D1,连接AA1,得到ADA1;再延长C1D1至A2,使D1A2=C1D1,以A2C1为一边,在CC1的延长线上作菱形A2C1C2D2,连接A1A2,得到A1D1A2按此规律,得到A2020D2020A2021,记ADA1的面积为S1,A1D1A2的面积为S2,A2020D2020A2021的面积为S2021,则S2021=_2、如图,在RtABC中,C90°,BC2,AC2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把BDE翻折到BDE的位置,BD交AB于点F若ABF为直角三角形,则AE的长为_或_3、准备在一个“7”字型遮阳棚下安装一个喷水装置(如图1),已知遮阳棚DB与竖杆OB垂直,遮阳棚的高度OB3米,喷水点A与地面的距离OA1米(喷水点A喷出来的水柱呈抛物线型),水柱喷水的最高点恰好是遮阳棚的C处,C到竖杆的水平距离BC2米(如图2),此时水柱的函数表达式为_,现将遮阳棚BD绕点B向上旋转45°(如图3),则此时水柱与遮阳棚的最小距离为_米(保留根号)4、如图,在中,点D是BC中点,点E、F分别在AB、AC上,连接DE、DF、EF,则EF的长为_5、如图,将ABCD沿AE折叠,点D恰好落在BC边上的点F处如果,那么的值是_三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,B30°,BC40cm,过点A作ADBC,垂足为D,ACD75°(1)求点C到AB的距离;(2)求线段AD的长度2、如图,在ABC中,ACB90°,AC4cm,BC3cm,动点P从点A出发,以每秒2cm的速度沿折线ABBC向终点C运动,同时动点Q从点C出发,以每秒1cm的速度向终点A运动以PQ为底边向下作等腰RtPQR,设点P运动的时间为t秒(0t4)(1)直接写出AB的长;(2)用含t的代数式表示BP的长;(3)当点R在ABC的内部时,求t的取值范围3、计算:(1)(2)4、如图,在中,点从点出发以每秒2个单位的速度沿运动,到点停止当点不与的顶点重合时,过点作其所在边的垂线,交的另一边于点设点的运动时间为秒(1)边的长为 (2)当点在的直角边上运动时,求点到边的距离(用含的代数式表示)(3)当点在的直角边上时,若,求的值(4)当的一个顶点到的斜边和一条直角边的距离相等时,直接写出的值5、如图,建筑物上有一高为的旗杆,从D处观测旗杆顶部A的仰角为,观测旗杆底部B的仰角为,则建筑物的高约为多少米?(结果保留小数点后一位)(参考数据,)-参考答案-一、单选题1、A【分析】根据题意作交于E,延长AC,作交于F,由坡度的定义求出DF的长,得AE的长,再解直角三角形求出DE、BE的长,即可解决问题【详解】解:如图,作交于E,延长AC,作交于F,斜坡CD的坡度为i=1:2.4,CD=104米,DF=AE=40(米),CF=96(米),,,(米),,,(米),(米).故选:A.【点睛】本题考查的是解直角三角形的应用-仰角俯角、坡度坡角问题,正确作出辅助线,构造直角三角形是解答此题的关键2、D【分析】连接格点AD,构造直角三角形,先计算AC,再算ACB的正弦即可【详解】连接格点A、D,如图在RtADC中,AD3,CD1,CAsinACB故选:D【点睛】本题考查了解直角三角形,掌握直角三角形的边角间关系是解决本题的关键3、A【分析】由三角函数的定义可知sinA=,可设a=4,c=5,由勾股定理可求得b=3,再利用余弦的定义代入计算即可【详解】解:sinA=,可设a=4,c=5,由勾股定理可求得b=3,cosA=,故选:A【点睛】本题主要考查三角函数的定义,掌握正弦、余弦函数的定义是解题的关键4、B【分析】过点D作,根据已知正切的定义得到,再根据等腰直角三角形的性质得到,再根据勾股定理计算即可;【详解】过点D作,tanDBA,是等腰直角三角形,AC5,在等腰直角中,由勾股定理得故选B【点睛】本题主要考查了解直角三角形,等腰直角三角形,勾股定理,准确计算是解题的关键5、D【分析】根据题意可推出ABC、ADB、BDC均为直角三角形,再在三个直角三角形中分别表示出tanA即可【详解】解:在RtABC中,ABC=90°,BD是AC边上的高,ABC、ADB、BDC均为直角三角形,又A+C=90°,C+DBC=90°,A=DBC,在RtABC中,tanA=,故A选项不符合题意;在RtABD中,tanA=,故B选项不符合题意;在RtBDC中,tanA=tanDBC=,故D选项不符合题意;选项D表示的是sinC,故D选项符合题意;故选D【点睛】本题考查解直角三角形相关知识,熟练掌握锐角三角函数在直角三角形中的应用是解题关键6、B【分析】由坡度定义可得位置升高的高度即为坡角所对的直角边根据题意可得BC:AC=1:2,AB=10m,可解出直角边BC,即得到位置升高的高度【详解】解:由题意得,BC:AC=1:2 设BC=x,则AC=2xAB=10, BC2+ AC2=AB2,x2+ (2x)2=102,解得:x=故选:B【点睛】本题主要考查了坡度的定义和解直角三角形的应用,注意画出示意图会使问题具体化7、D【分析】过点A作ADBC于点D,分别在 和中,利用锐角三角函数,即可求解【详解】解:过点A作ADBC于点D,根据题意得: 海里,ADC=ADB=90°,CAD=45°,BAD=60°,在 中, 海里,在 中, 海里, 海里,即该船行驶的路程为海里故选:D【点睛】本题主要考查了解直角三角形,熟练掌握特殊角的锐角三角函数值是解题的关键8、A【分析】根据点C是半圆的中点,得到AC= BC,直径所对的圆周角是90°得到ACB=90°,同弧所对圆周角相等得到APC=ABC=45°,AD平分PAB得到 BAD = DAP,结合外角的性质可证CAD = CDA,由线段的和差解得PD=P-CD=P-1,由此可知当CP为直径时,PD最大,最后根据三角函数可得答案【详解】解:点C是半圆的中点, AC= BCAB是直径ACB=90°CAB = CBA= 45°同弧所对圆周角相等APC=ABC=45°AD平分PAB BAD = DAPCDA= DAP+ APC = 45°+ DAPCAD= CAB+BAD = 45°+ BADCAD = CDAAC=CD=1PD=P-CD=P-1当CP为直径时,PD最大RtABC中,ACB = 90°,CAB = 45°, CP的最大值是 PD的最大值是 -1,故选:A【点睛】本题考查了同弧所对圆周角相等、直径所对的圆周角是90°、角平分线的性质、三角形外角的性质、三角函数的知识,做题的关键是熟练掌握相关的知识点,灵活综合的运用9、C【分析】根据网格的特点,勾股定理求得的长,进而根据勾股定理逆定理判定是直角三角形,进而根据正弦的定义求解即可【详解】解:是直角三角形,且是斜边故选C【点睛】本题考查了网格中勾股定理与勾股定理的逆定理的应用,正弦的定义,证明是直角三角形是解题的关键10、C【分析】根据特殊角的余弦值即可得【详解】解:,故选:C【点睛】本题考查了特殊角的余弦,熟记特殊角(如)的余弦值是解题关键二、填空题1、240383#3·24038【解析】【分析】由题意得BCD=60°,AB=AD=CD=1,则有ADA1为等边三角形,同理可得A1D1A2. A2020D2020A2021都为等边三角形,进而根据等边三角形的面积公式可得S1=34,S2=3,.由此规律可得Sn=322n-4,即可求解【详解】解:四边形是菱形,AB=AD=CD=1,ADBC,ABCD,ABC=120°,BCD=60°,ADA1=BCD=60°,DA1=CD,DA1=AD,ADA1为等边三角形,同理可得A1D1A2. A2020D2020A2021都为等边三角形,过点B作BECD于点E,如图所示:BE=BCsinBCD=32,S1=12A1DBE=34A1D2=34,同理可得:S2=34A2D12=34×22=3,S3=34A3D22=34×42=43,;由此规律可得:Sn=322n-4,S2021=3×22×2021-4=240383;故答案为:240383【点睛】本题考查了菱形的性质,等边三角形的性质与判定及三角函数,解题的关键是熟练掌握以上知识点2、 3; 145【解析】【分析】分两种情况讨论:当BDAE时,ABF为直角三角形;当DBAB时,ABF为直角三角形.【详解】解:当BDAE时,ABF为直角三角形,如下图:根据题意,BE=BE,BD=BD=BC=,B=EBF,在RtABC中,C=90°,BC=2,AC=2,AB=BC2+AC2=232+22=4,sinB=24=12,B=EBF =30°,在RtBDF中,B=30°,DF=BD=,BF=BD-DF=-=,在RtBEF中,EBF =30°,EF=BE,BF=B'E2-EF2=2EF2-EF2=EF,即=EF,EF=,则BE=1,AE=AB-BE=4-1=3.当DBAB时,ABF为直角三角形,如下图:连接AD,过A作ANEB,交EB的延长线于N,根据题意,BE=BE,BD=CD=BD=BC=,DBE=EBF,在RtABC中,C=90°,BC=2,AC=2,AB=BC2+AC2=232+22=4,sinDBE=24=12,DBE=EBF =30°,ABF=90°,ABE=ABF+EBF=120°,RtABN中,ABN=60°,BAN=30°,BN=AB,在RtABD和RtACD中AD=ADB'D=CD,RtABDRtACD(HL),AB=AC=2,BN=1,AN=,设AE=x,则BE= BE=4-x,在RtAEN中,AN2+EN2=AE2,()2+(4-x+1)2=x2x=145综上,AE的长为3或145,故答案为:3或145.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等也考查了含30度的直角三角形三边的关系和勾股定理3、 【解析】【分析】先根据已知设出抛物线解析式,用待定系数法求函数解析式;将线段BD沿y轴向下平移,使平移后的线段MN恰好与抛物线只有一个交点,先根据BD与水平线成45°角,从而得到直线BD与直线平行,再根据,得出MN平行于直线,利用待定系数法求出直线MN的函数解析式,再根据直线MN和抛物线有一个公共点,联立解方程组,根据求出直线MN的解析式,再求出直线MN与y轴的交点M的坐标,求出BM的长度,再根据,求出BG即可【详解】解:将线段BD沿y轴向下平移,使平移后的线段MN恰好与抛物线只有一个交点,过点B作BGMN于G,如图:抛物线的顶点C的坐标为,设抛物线的解析式为,把点的坐标代入得:,解得:,BCy轴,BD与直线平行,且BD与y轴的夹角是45°,MN与直线平行,设MN的解析式为,MN与抛物线只有一个交点,方程组只有一组解,方程有两个相等的实数根,将方程整理得:,解得:,MN的解析式为,令,得,(米),在中,(米),此时水住与遮阳棚的最小距离为米故答案为:,【点睛】本题考查二次函数的应用以及锐角三角函数,掌握待定系数法求解析式以及二次函数的性质是解题的关键4、【解析】【分析】延长ED到G使DG=ED,连结GC,GF,过G作GHAC与H,根据点D为BC中点,得出BD=CD,先证BDECDG(SAS),可得BE=CG=3,B=GCD,得出GCH=DCG+ACB=B+ACB=60°,根据30°直角三角形先证可得HC=,利用锐角三角函数可求GH=cos30°GC=,在RtGHF中,FG=,再证,即,根据三角函数可求即可【详解】解:延长ED到G使DG=ED,连结GC,GF,过G作GHAC与H,点D为BC中点,BD=CD,在BDE和CDG中,BDECDG(SAS),BE=CG=3,B=GCD,B+ACB=180°-BAC=180°-120°=60°,GCH=DCG+ACB=B+ACB=60°,在RtGCH中,HGC=90°-HCG=30°,HC=,GH=cos30°GC=,CF=5,HF=CF-CH=5,在RtGHF中,FG=,即,在RtEFG中,故答案为【点睛】本题考查三角形全等判定与性质,三角形内角和,30°直角三角形性质,锐角三角函数,勾股定理,直角三角形判定与性质,本题难度较大,综合性强,利用辅助线构造准确图形是解题关键5、#【解析】【分析】利用“一线三垂直”模型,可知,由折叠可知,AE=AD,利用勾股定理表示出BF,即可求出的值【详解】解:由题意得,,,即:,设:AB为3x,则AD为5x,AE=AD=5x,在中,有勾股定理得:,故答案为:【点睛】本题是图形与三角函数的综合运用,利用图形的变换,表示出所求的教角的函数值是本题的关键三、解答题1、(1)20cm;(2)【解析】【分析】(1)过C点作CHAB于H,如图,在RtBCH中,利用含30°的直角三角形三边的关系易得CHBC20;(2)在RtBCD中利用含30°的直角三角形三边的关系可得CH20,BHCH20,再利用三角形外角性质计算出BAC45°,则ACH为等腰直角三角形,所以AHCH20,然后利用面积法求AD【详解】解:(1)过C点作CHAB于H,如图,在RtBCH中,B30°,CHBC×4020cm,即点C到AB的距离为20cm;(2)在RtBCH中,B30°,CH20cm,BHCH20cm,ACDB+BAC,BAC75°30°45°,ACH为等腰直角三角形,AHCH20cm,AB(20+20)cm,ADBCCHAB,AD(10+10)cm【点睛】本题主要考查了含30°直角三角形的性质 、解直角三角形、三角形的外角以及三角形的面积等知识点,正确作出辅助线、构造直角三角形成为解答本题的关键2、(1)AB5cm;(2)当0t时,BP52t,当t4时,BP2t5;(3)t【解析】【分析】(1)由勾股定理可求得答案;(2)分0t和t4两种情况列式即可;(3)当点P在AB上时,以点C为原点,分别以BC、AC所在的直线为x,y轴建立坐标系,作PDAC于D,REPD于E,QGRE于G,求出此时t的值即可解决问题;【详解】解:(1)ACB90°,AC4cm,BC3cm,AB5(cm);(2)当0t时,BPABAP52t,当t4时,BP2tAB2t5;(3)如图,当点P在BC上时,R在ABC外部,当点P在AB上时,以点C为原点,分别以BC、AC所在的直线为x,y轴建立坐标系,作PDAC于D,REPD于E,QGRE于G,EG90°,PRE+RPE90°,PRQ90°,PRE+GRQ90°,RPEGRQ,PRQR,PERRGQ(AAS),PERG,ERGQ,AP2t,sinBAC,cos ,PD2tsinBAC,AD2tcosBAC,设点R(x,y),PE,RGyt,GQx,ER4y,y,点R在直线y上运动,当y0时,0,x,由得,t,A(0,4),B(3,0),AB的解析式是:y+4,由得,x,2,t,t【点睛】本题等腰三角形的性质、锐角三角函数、全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建方程解决问题,学会利用特殊位置取值范围问题3、(1)1;(2)【解析】【分析】(1)先化简绝对值、计算特殊角的正弦和正切值,再计算实数的混合运算即可得;(2)先计算特殊角的三角函数值,再计算二次根式的混合运算即可得【详解】解:(1)原式;(2)原式【点睛】本题考查了特殊角的三角函数值的混合运算等知识点,熟记特殊角的三角函数值是解题关键4、(1)4;(2);(3)5或;(4)或或4或5【解析】【分析】(1)由勾股定理即可得出的长;(2)设点到边的距离为.分两种情况,当点在边上运动时,当点在边上运动时,由锐角三角函数定义分别求解即可;(3)分两种情况,当点在边上时,当点在边上时,由锐角三角函数定义分别表示出,列出方程,求解即可;(4)分情况讨论:在上,到的距离到的距离,在上,到的距离到的距离,在上,到的距离到的距离,在上,到的距离到的距离,分别求出的值即可【详解】解:(1),故答案为:4;(2)设点到边的距离为.当点在边上运动时,过作于,如图1所示:,;当点在边上运动时,过作于,如图2所示:,;综上所述,点到边的距离为或;(3),当点在边上时,如图3所示:则,即,解得:当点在边上时,如图4所示:则,则,解得:;综上所述,若,的值为5或;(4)分情况讨论:在上,到的距离到的距离,过作于,如图5所示:则,由(2)得:,解得:;在上,到的距离到的距离,过作于,如图6所示:则,由(2)得:,解得:;在上,到的距离到的距离,如图7所示:则,即,解得:;在上,到的距离到的距离,如图8所示:则,又,即,解得:,解得:;综上所述,当的一个顶点到的斜边和一条直角边的距离相等时,的值为或或4或5.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、相似三角形的判定与性质、勾股定理、锐角三角函数定义以及分类讨论等知识,熟练掌握全等三角形的判定与性质和相似三角形的判定与性质,进行分类讨论是解题的关键5、建筑物BC的高约为24.2米【解析】【分析】先根据等腰直角三角形的判定与性质可得,设,从而可得,再在中,利用正切三角函数解直角三角形即可得【详解】解:由题意得:,是等腰直角三角形,设,则,在中,即,解得,经检验,是所列分式方程的解,且符合题意,建筑物BC的高约为24.2米,答:建筑物BC的高约为24.2米【点睛】本题考查了等腰直角三角形的判定与性质、解直角三角形的应用,熟练掌握解直角三角形的方法是解题关键