知识点详解人教版八年级数学下册第十七章-勾股定理章节测试练习题(名师精选).docx
-
资源ID:32641939
资源大小:744.13KB
全文页数:31页
- 资源格式: DOCX
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
知识点详解人教版八年级数学下册第十七章-勾股定理章节测试练习题(名师精选).docx
人教版八年级数学下册第十七章-勾股定理章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组数中,以它们为边长的线段能构成直角三角形的是( )A1,2,3B1,C4,5,6D12,15,202、如图,黑色部分长方形的面积为( )A24B30C40D483、如图,数轴上点A所表示的数是()AB+1C+1D14、如图,OAOB,则数轴上点A所表示的数是( )A1.5BCD25、如图,在ABC中,ACB90°,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E若AC3,AB5,则BE等于()A2BCD6、课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),ACB90°,ACBC,从三角板的刻度可知AB20cm,小聪想知道砌墙砖块的厚度(每块砖的厚度相等),下面为砌墙砖块厚度的平方是( )Acm2Bcm2Ccm2Dcm27、梯子的底端离建筑物6米,10米长的梯子可以到达建筑物的高度是( )A6米B7米C8米D9米8、有下列四个命题是真命题的个数有( )个垂直于同一条直线的两条直线互相垂直;有一个角为的等腰三角形是等边三角形;三边长为,3的三角形为直角三角形;顶角和底边对应相等的两个等腰三角形全等A1B2C3D49、如图,在RtABC中,CBA60°,斜边AB10,分别以ABC的三边长为边在AB上方作正方形,S1,S2,S3,S4,S5分别表示对应阴影部分的面积,则S1+S2+S3+S4+S5()A50B50C100D10010、如图,RtABC中,BAC90°,分别以ABC的三边为边作正方形ABDE,正方形BCFG,正方形ACHI,AI交CF于点J三个正方形没有重叠的部分为阴影部分,设四边形BGFJ的面积为S1,四边形CHIJ的面积为S2,若S1S212,SABC4,则正方形BCFG的面积为()A16B18C20D22第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,ABC97.5°,P、Q两点在AC边上,PB2,BQ3,PQ,若点M、N分别在边AB、BC上,(1)_(2)当四边形PQNM的周长最小时,(MP+MN+NQ)2=_2、如图,等腰ABC中,ABAC,BC,BD是AC边上的中线,G是ABC的重心,则GD_3、如图,在RtABC中,C=90°,D为AC上的一点,且DA=DB=5,且DAB的面积为10,那么AB的长是_4、如图,若ABCEFC,且CF3cm,EFC60°,则AC_5、如图在数轴上运用尺规作图法作出点A,则点A表示的数为_ 三、解答题(5小题,每小题10分,共计50分)1、如图,RtABC中,A90°,AB8cm,AC6cm,P是从A点出发的动点,沿若A-B-C-A在三边上运动一周,速度为每秒2cm设P点的运动时间为t秒(1)当t6.5秒时,求出CP的长(2)是否存在t的值,使得时间为t秒时ABP的面积,与时间为(t+2)秒时ACP的面积相等?若存在,求出t的值;若不存在,请说明理由(3)当t 时,ACP为等腰三角形(直接给出答案)2、己知:在平面直角坐标系xOy中,ABC如图所示(1)将ABC进行平移,使得点A平移到点O,作出平移后的OBC,并求出平移的距离AO_(温馨提示:请把图画在答题卷相对应的图上);(2)若ABC上有一点P(a,b),平移后的对应点为P,则P的坐标是_(用含a,b的代数式表示)3、生态兴则文明兴,生态衰则文明衰“十三五”以来,青岛市坚持生态优先、绿色发展理念,持续改善生态环境如图现有施工遗留的一处空地,计划改造成绿地公园,已知A90°,ABAD3米,BC10米,CD8米,已知每平方米的改造费用为200元,请问改造该区域需要花费多少元?4、如图,在ABC中,BAC90°,ABAC,ADBC于点D,AD2,E为AC边上一点(不与A,C重合),连结BE,作AGBE,垂足为F,交BC于点G,连结EG分别记AEB,AGB,CEG为1,2,3(1)AB的长为 (直接给出答案)(2)当12时,求证:BE平分ABC求EGC的周长(3)当13时,AE的长为 (直接给出答案)5、如图,图,图都是4×4的正方形网格,每个小正方形的顶点称为格点A,B两点均在格点上,在给定的网格中,按下列要求画图:(1)在图中,画出以AB为底边的等腰ABC,并且点C为格点(2)在图中,画出以AB为腰的等腰ABD,并且点D为格点(3)在图中,画出以AB为腰的等腰ABE,并且点E为格点,所画的ABE与图中所画的ABD不全等-参考答案-一、单选题1、B【分析】根据勾股定理逆定理可知,分别计算选项中两短边的平方和是否等于长边的平方即可【详解】解:、,不能构成三角形,故本选项不符合题意;、,能构成直角三角形,故本选项符合题意;、,不能构成直角三角形,故本选项不符合题意;、,不能构成直角三角形,故本选项不符合题意;故选:【点睛】本题考查了勾股定理逆定理,熟知三角形的三边满足:,那么这个三角形为直角三角形是解题的关键2、B【分析】根据勾股定理求出直角三角形的斜边,再利用长方形面积公式进行求解即可【详解】解:在直角三角形中,两直角边为6和8,直角三角形的斜边为,长方形面积为:,故选B【点睛】本题考查了勾股定理的应用,长方形面积的计算,解题的关键是熟练掌握勾股定理3、D【分析】先根据勾股定理计算出BC,则BABC,然后计算出AD的长,接着计算出OA的长,即可得到点A所表示的数【详解】解:如图,BD1(1)2,CD1,BC,BABC,AD2,OA1+21,点A表示的数为1故选:D【点睛】本题主要考查了勾股定理,实数与数轴的关系,熟练掌握勾股定理,实数与数轴的关系是解题的关键4、C【分析】利用勾股定理求得线段OB的长,结合数轴即可得出结论【详解】解:OBOAOB,OA数轴上点A表示的数是:故选:C【点睛】本题主要考查了数轴,勾股定理利用勾股定理求得线段OB的长度是解题的关键5、C【分析】连接EA,根据勾股定理求出BC,根据线段垂直平分线的性质得到EAEB,根据勾股定理列出方程,解方程即可【详解】解:连接EA,ACB90°,AC3,AB5,BC4,由作图可知,MN是线段AB的垂直平分线,EAEB,则AC2+CE2AE2,即32+(4BE)2BE2,解得,BE,故选:C【点睛】本题考查了线段垂直平分线的作法和性质、勾股定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键6、A【分析】设每块砖的厚度为xcm,则AD=3xcm,BE=2xcm,然后证明DACECB得到CD=BE=2xcm,再利用勾股定理求解即可【详解】解:设每块砖的厚度为xcm,则AD=3xcm,BE=2xcm,由题意得:ACB=ADC=BEC=90°,ACD+DAC=ACD+BCE=90°,DAC=ECB,又AC=CB,DACECB(AAS),CD=BE=2xcm,故选A【点睛】本题主要考查了全等三角形的性质与判定,勾股定理,解题的关键在于能够熟练掌握全等三角形的性质与判定条件7、C【分析】根据题意画出图形,再根据勾股定理进行解答即可【详解】解:如图所示:AB=10米,BC=6米,由勾股定理得:=8米故选:C【点睛】本题考查的是勾股定理的应用,根据题意画出图形,利用数形结合求解是解答此题的关键8、C【分析】根据等边三角形的判定定理、勾股定理逆定理、全等三角形的判定判断即可【详解】:在同一平面内,垂直于同一条直线的两条直线互相垂直,故错误;:有一个角为的等腰三角形是等边三角形,故正确;:,边长为,3的三角形为直角三角形,故正确;:顶角相等则等腰三角形三个角都对应相等,再加上底边对应相等,这两个等腰三角形全等,故正确;综上是真命题的有3个;故选:C【点睛】本题考查命题的真假,结合等边三角形的判定、勾股定理逆定理、全等三角形的判定等知识综合判断是解题的关键9、B【分析】根据题意过D作DNBF于N,连接DI,进而结合全等三角形的判定与性质得出S1+S2+S3+S4+S5RtABC的面积×4进行分析计算即可.【详解】解:在RtABC中,CBA60°,斜边AB10,BCAB5,AC5,过D作DNBF于N,连接DI,在ACB和BND中,ACBBND(AAS),同理,RtMNDRtOCB,MDOB,DMNBOC,EMDO,DNBCCI,DNCI,四边形DNCI是平行四边形,NCI90°,四边形DNCI是矩形,DIC90°,D、I、H三点共线,FDIO90°,EMFDMNBOCDOI,FMEDOI(AAS),图中S2SRtDOI,SBOCSMND,S2+S4SRtABCS3SABC,在RtAGE和RtABC中,RtAGERtACB(HL),同理,RtDNBRtBHD,S1+S2+S3+S4+S5S1+S3+(S2+S4)+S5RtABC的面积+RtABC的面积+RtABC的面积+RtABC的面积RtABC的面积×45×5÷2×450故选:B【点睛】本题考查勾股定理的应用和全等三角形的判定,解题的关键是将勾股定理和正方形的面积公式进行灵活的结合和应用10、C【分析】设BCa,ACb,ABc,由正方形面积和三角形面积得S正方形BCFGS正方形ACHI16,即a2b216,再由勾股定理得a2b2c2,则c216,求出c4,然后求出b2,则a2b2+c220,即可求解【详解】解:设BCa,ACb,ABc,S1S正方形BCFGSABCSACJ,S2S正方形ACHISACJ,S1S2S正方形BCFGSABCSACJS正方形ACHI+SACJS正方形BCFG4S正方形ACHI12,S正方形BCFGS正方形ACHI16,即a2b216,RtABC中,BAC90°,a2b2c2,c216,c4(负值已舍去),SABCbc2b4,b2,a2b2+c216+2220,正方形BCFG的面积为20,故选:C【点睛】本题考查了勾股定理,设参数表示三角形的边长,根据已知条件求得a2b216是解题的关键二、填空题1、45°【分析】作点关于的对称点,点关于的对称点,连接交于,交于,此时四边形的周长最小,过点作于,由勾股定理求出,得出,再求出,过点作于,在中,则,在中,由勾股定理得,即可得出结果【详解】解:(1)如图,作点关于的对称点,点关于的对称点,连接交于,交于,此时四边形的周长最小,过点作于,解得:,(2),过点作于,在中,在中,【点睛】本题考查轴对称最短问题、勾股定理、含角的直角三角形的性质、轴对称的性质等知识,解题的关键是学会利用轴对称解决最短问题,学会添加常用辅助线,由直角三角形解决问题2、【分析】作于,求出,设,则,在和中,由勾股定理得出方程,求出,由勾股定理得出,再由重心定理即可得出答案【详解】解:作于,如图所示:是边上的中点,设,则,在和中,由勾股定理得:,即,解得:,是的重心,;故答案为:【点睛】本题考查了三角形的重心、等腰三角形的性质、勾股定理等知识;解题的关键是熟练掌握勾股定理和三角形的重心定理3、4【分析】由SDABDABC10且DA5得出BC4,再在RtBCD中,利用勾股定理求出,然后在Rt中通过勾股定理可得答案【详解】解:C90°,DA5,SDABDABC10,BC4在RtBCD中,CD2BC2BD2,即CD24252,解得:CD3,在Rt中,,故答案为:【点睛】本题主要考查了勾股定理,解题的关键是掌握勾股定理,在任何一个直角三角形中,两条直角边的平方和一定等于斜边的平方4、【分析】根据得出,得出,根据勾股定理得,由即可得出【详解】解:,故答案是:【点睛】本题考查了三角形全等,勾股定理,含对应的边等于斜边的一半,解题的关键是掌握全等三角形的性质5、【分析】根据勾股定理,可得斜边的长,根据圆的性质可得答案【详解】解:由勾股定理,得:斜边长为 ,由圆的半径相等,得: OA = ,点A表示的数为,故答案为:【点睛】本题考查了实数与数轴 ,勾股定理得出斜边的长是解题关键三、解答题1、(1)5cm;(2)t5.5;(3)3或5.4或6或6.5【分析】(1)先根据速度×时间求出点P的路程,由勾股定理求出BC的长,进而求出CP的长;(2)由等面积法求得AD的长,要是t秒时ABP的面积与时间为(t+2)秒时ACP的面积相等可以判断出点P在BC 上,分别表示出ABP、ACP的面积,列出关于t的方程,解除方程即可;(3)分别讨论点P在AB、BC、上存在的所有情况即可得出结论【详解】解:(1)P点速度为每秒2cm运动时间为t6.5秒时,点P的路程为:2×6.513cmRtABC中,A90°,AB8cm,AC6cm,cm,AB+BC8+1018cm,CP18135cm(2)当t5.5秒时,使得时间为t秒时ABP的面积,与时间为(t+2)秒时ACP的面积相等,理由如下:过点A作ADBC于点D,即6×810AD,解得ADcm,使得时间为t秒时ABP的面积,与时间为(t+2)秒时ACP的面积相等,点P在BC上4t7,即,解得:t5.5秒(3)当点P在BC上时,如图,要使ACP为等腰三角形,ACAP1,即2t6,解得:t3,当点P在BC上时,当ACAP时,如图ACAP26,AD4.8,DP2DC,AB+BP2AB+BCP2C183.63.610.8cm,2t10.8,解得:t5.4,当ACCP时,此时ACCP36cm,BP31064cm,AB+BP38+412cm,2t12,解得:t6,当PCPA时,过点P4作P4GAC于点G,AB/P4G,AGCG,点P4为BC的中点,此时AB+BP48+513cm,即2t13,解得:t6.5,综上所述:点t3或5.4或6或6.5时,ACP为等腰三角形,故答案为:3或5.4或6或6.5【点睛】本题考查了勾股定理,等腰三角形的性质和判定,平行线段的性质等知识,熟练掌握等腰三角形的判定解题的关键2、(1);(2)【分析】(1)根据题意可以得出ABC平移后的图形,图形平移距离既是对应点平移距离;(2)根据ABC的平移可得P的坐标为(a, b),平移后横坐标-3,纵坐标-5【详解】解:(1)如图即为所求.平移的距离是:;(2)如图可知,将ABC向左平移3个单位长度,向下平移5个单位长度得到P(a,b),【点睛】本题主要考查了平移变换的作图、勾股定理等知识点,几何图形都可看做是由点组成,我们在画一个图形的平移图形时,也就是确定一些特殊点的对应点3、改造该区域需要花费6600元【分析】连接,利用勾股定理求出的长,再利用勾股定理的逆定理证明,从而解决问题【详解】解:如图,连接,在中,由勾股定理得,(米,(平方米),(元,改造该区域需要花费6600元【点睛】本题主要考查了勾股定理和勾股定理的逆定理,解题的关键是作辅助线构造直角三角形4、(1);(2)见解析;4;(3)【分析】(1)根据题意证明ABC是等腰直角三角形,然后由等腰三角形三线合一性质和等腰直角三角形的性质得到,最后根据勾股定理即可求出AB的长;(2)首先由AGBE,得到,然后由BAC90°,得到,进而由12可得出,即可证明出BE平分ABC;首先由ASA证明,得到,然后得出所在直线是线段的垂直平分线,利用垂直平分线的性质得出,再由ABC是等腰直角三角形,得到,即可求出EGC的周长;(3)作交的延长线于H点,首先根据AAS证明,得到,然后根据ASA证明,进而得到,即可得出【详解】解:(1)BAC90°,ABAC, ABC是等腰直角三角形,ADBC于点D,AD2,在中,;(2)AGBE,垂足为F,BAC90°,12,BE平分ABC在和中,所在直线是线段的垂直平分线,ABC是等腰直角三角形,EGC的周长;(3)如图所示,作交的延长线于H点,在和中,13时,在和中,又,【点睛】此题考查了等腰直角三角形的性质和判定,全等三角形的性质和判定,解题的关键是熟练掌握等腰直角三角形的性质和判定,全等三角形的性质和判定方法判定三角形全等的方法有:SSS,SAS,AAS,ASA,HL(直角三角形)5、(1)见解析;(2)见解析;(3)见解析【分析】(1)根据勾股定理AB=,以AB为底等腰直角三角形,两直角边为x, 根据勾股定理求出,找横1竖2个格,或横2竖1个格画线即可;(2)以AB=为腰的等腰ABD,AB=AD,以点A为起点找横1竖3个格,或横3竖1个格画线;如图ABD; AB=BD,以点B为起点找横1竖3个格,或横3竖1个格画线;如图ABD(3)以AB=为腰的等腰ABD,AB=BE,以点B为起点找横1竖3个格,或横3竖1个格;如图ABEAB=AE,以点A为起点找横1竖3个格,或横3竖1个格;所画的ABE与图中所画的ABD不同即可【详解】解:(1)根据勾股定理AB=,以AB为底等腰直角三角形,两直角边为x, 根据勾股定理,解得,横1竖2,或横2竖1个画线;如图ABC;(2)以AB=为腰的等腰ABD,AB=AD,以点A为起点找横1竖3个格,或横3竖1个格画线;如图ABD;AB=BD,以点B为起点找横1竖3个格画线,或横3竖1个格;如图ABD;(3)以AB=为腰的等腰ABD,AB=BE,以点B为起点找横1竖3个格,或横3竖1个格;如图ABEAB=AE,以点A为起点找横1竖3个格,或横3竖1个格;所画的ABE与图中所画的ABD不全等【点睛】本题考查网格作图,掌握网格作图方法与勾股定理,利用勾股定理确定腰长构造直角三角形是解题关键