精品解析2022年人教版九年级数学下册第二十七章-相似同步测试试题(无超纲).docx
-
资源ID:32646110
资源大小:465.98KB
全文页数:27页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品解析2022年人教版九年级数学下册第二十七章-相似同步测试试题(无超纲).docx
人教版九年级数学下册第二十七章-相似同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,点D,E分别是AC和BC的中点,连接AE,BD交于点F,则下列结论中正确的是( )ABCD2、若且,则的值是( )ABCD3、如图,直线abc,直线m分别交直线a,b,c于点A,B,C,直线n分别交直线a,b,c于点D,E,F若,则的值为()ABC2D34、若两个等腰直角三角形斜边的比是1:3,则它们的面积比是()A1:4B1:6C1:9D1:105、下列图形一定是相似图形的是()A两个矩形B两个等腰三角形C两个直角三角形D两个正方形6、如图,在中,点为边上一点,将沿直线翻折得到,与边交于点E,若,点为中点,则的长为( )AB6CD7、下列图形中,ABC与DEF不一定相似的是( )ABCD8、如图,P是直角ABC斜边AB上任意一点(A,B两点除外),过点P作一条直线,使截得的三角形与ABC相似,这样的直线可以作()A4条B3条C2条D1条9、如图,下列选项中不能判定ACDABC的是()AACDBBADCACBCAC2ADABDBC2BDAB10、如图,在平面直角坐标系中,ABC的顶点A在第二象限,点B坐标为(2,0),点C坐标为(1,0),以点C为位似中心,在x轴的下方作ABC的位似图形ABC若点A的对应点A的坐标为(2,3),点B的对应点B的坐标为(1,0),则点A坐标为()A(3,2)B(2,)C(,)D(,2)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知ABCDEF,ABC与DEF的周长比为13,则DEF与ABC的面积之比为_2、在平面直角坐标系中,ABC与DEF位似,位似中心是原点O已知A与D是对应顶点且A,D的坐标分别是A(9,18),D(3,6),若DEF的周长为3,则ABC的周长为 _3、如图,在中,E为CD上一点,连结BE并延长交AD延长线于点F如果,那么_4、如图所示,在四边形中,ADBC,如果要使ABCADC,那么还要补充的一个条件是_(只要求写出一个条件即可)5、如图,在平面直角坐标系中,点在第一象限内,点在轴正半轴上,是以点为位似中心,在第三象限内与的相似比为的位似图形若点的坐标为,则点的坐标为 _三、解答题(5小题,每小题10分,共计50分)1、已知:,且,求的值2、如图,ACBD,AB与CD相交于点O,OC2OD若SAOC36,求SBOD3、如图,在正方形网格中,每一个小正方形的边长都为1,ABC的顶点分别为A(2,3),B(2,1),C(5,4)(1)只用直尺在图中找出ABC的外心P,并写出P点的坐标_(2)以(1)中的外心P为位似中心,按位似比2:1在位似中心的左侧将ABC放大为ABC,放大后点A、B、C的对应点分别为A、B、C,请在图中画出ABC;(3)若以A为圆心,为半径的A与线段BC有公共点, 则的取值范围是_4、图、图、图均是的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C均在格点上只用无刻度的直尺,在给定的网格中,按照要求作图(保留作图痕迹)(1)在图中作的中线BD(2)在图中作的高BE(3)在图中作的角平分线BF5、(1)证明命题:若直线与直线互相垂直,则我们可以先证明“直线与直线互相垂直时,”请利用图1完成证明(2)应用命题:如图2,中,BC在x轴上,点A在y轴正半轴上求线段AB的垂直平分线的解析式;点M在平面直角坐标系内,点F在直线AC上,以A,B,F,M为顶点的四边形是菱形,请直接写出点F的坐标-参考答案-一、单选题1、D【解析】【分析】根据三角形的中位线的性质和相似三角形的判定和性质定理即可得到结论【详解】解:点D,E分别是AC和BC的中点,DEBC,DEFBFA,故A选项错误;故B选项错误;DEFBAF,故C选项错误; D为AC的中点,AD=CD ,故D选项正确;故选:D【点睛】本题考查了三角形的中位线的性质,相似三角形的判定和性质,正确的识别图形是解题的关键2、D【解析】【分析】将用表示出来,得到,再将求出的结果与联立求出的值 ,最后把所求的代入所求的代数式即可求解【详解】解:,解,得, ,故选:D【点睛】本题考查了比例的性质,解一元一次方程,求代数式的值,由比例系数表示是解题的关键3、A【解析】【分析】先由得出,再根据平行线分线段成比例定理即可得到结论【详解】解:,故选:A【点睛】本题考查了平行线分线段成比例定理,解题的关键是掌握三条平行线截两条直线,所得的对应线段成比例4、C【解析】【分析】根据相似三角形的判定与性质即可得出答案【详解】解:如图,ABC与DEF都为等腰直角三角形,且EF:AB1:3,则ABCEFD,故选:C【点睛】本题主要考查了等腰直角三角形的性质,相似三角形的判定与性质等知识,熟练掌握相似三角形的性质是解题的关键5、D【解析】【分析】根据相似图形的定义,结合选项,用排除法求解【详解】解:A、两个矩形,对应角相等,对应边不一定成比例,故不符合题意;B、两个等腰三角形顶角不一定相等,故不符合题意C、两个直角三角形,只有一个直角相同,锐角不一定相等,故不符合题意;D、两个正方形,符合角分别对应相等,边分别对应成比例,符合相似性定义,故符合题意;故选:D【点睛】本题考查的是相似图形的概念,掌握“角分别对应相等,边分别对应成比例的两个多边形相似”是解本题的关键.6、A【解析】【分析】由折叠的性质可得,然后证明,得到,设,即可推出,从而得到,则,从而得到,再由,求解即可【详解】解:由折叠的性质可得,AB=AC,B=C,又,E是CD的中点,DE=CE,设,解得,故选A【点睛】本题主要考查了等腰三角形的性质,相似三角形的性质与判定,折叠的性质,解题的关键在于能够熟练掌握相似三角形的性质与判定条件7、A【解析】【分析】根据相似三角形的判定定理进行解答【详解】解:A、当EF与BC不平行时,ABC与DEF不一定相似,故本选项符合题意;B、由ABC=EFC=90°,ACB=EDF可以判定ABCDEF,故本选项不符合题意;C、由圆周角定理推知B=F,又由对顶角相等得到ACB=EDF,可以判定ABCDEF,故本选项不符合题意;D、由圆周角定理得到:ACB=90°,所以根据ACB=CDB=90°,ABC=CBD,可以判定ABCDEF,故本选项不符合题意;故选:A【点睛】本题考查了相似三角形的判定,解题时,需要熟练掌握圆周角定理和相似三角形的判定定理8、B【解析】【分析】根据已知及相似三角形的判定方法(或平行线截线段成比例)进行分析,从而得到最后答案【详解】解:如图,过点P可作PEBC或PEAC,APEABC、PBEABC;过点P还可作PEAB,可得:EPAC90°,AAAPEACB;满足这样条件的直线的作法共有3种故选:B【点睛】本题主要考查了相似三角形的判定,熟练掌握相似三角形的判定定理从是解题的关键9、D【解析】【分析】根据相似三角形的判定定理逐项判断即可【详解】解:A.AA,ACDB,ACDABC,故本选项不符合题意;B.AA,ADCACB,ACDABC,故本选项不符合题意;C.AC2ADAB,AA,ACDABC,故本选项不符合题意;D.BC2BDAB,添加AA,不能推出ACDABC,故本选项符合题意故选:D【点睛】本题考查了相似三角形的判定定理,能熟记相似三角形的判定定理的内容是解此题的关键10、C【解析】【分析】如图,过点A作AEx轴于E,过点A作AFx轴于F利用相似三角形的性质求出AE,OE,可得结论【详解】解:如图,过点A作AEx轴于E,过点A作AFx轴于FB(-2,0),C(-1,0),B(1,0),A(2,-3)OB=2,OC=OB=1,OF=2,AF=3,BC=1,CB=2,CF=3,ABCABC,ACE=ACF,AEC=AFC=90°,AECAFC,故选:C【点睛】本题考查位似变换,坐标与图形性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题二、填空题1、9:1【解析】【分析】根据“相似三角形的面积比等于相似比的平方”即可求得答案【详解】解:ABCDEF,ABC与DEF的周长比为1:3,ABC与DEF的相似比为1:3,DEF与ABC的面积之比为32:12即9:1,故答案为:9:1【点睛】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键2、9【解析】【分析】直接利用对应点坐标得出位似比,进而得出周长比,即可得出答案【详解】解:A,D的坐标分别是A(9,18),D(3,6),ABC与DEF的相似比为:3:1,ABC与DEF的周长比为:3:1,DEF的周长为3,ABC的周长为:9故答案为:9【点睛】本题主要考查位似三角形的性质,掌握位似比等于相似比是解题的关键3、4:25#【解析】【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的面积比等于相似比的平方就可得到答案【详解】解:如图,四边形ABCD是平行四边形,DCAB,CDABDFEAFB,DE:EC2:3,DE:DCDE:AB2:5,故答案为:4:25或 【点睛】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键4、或或(答案不唯一)【解析】【分析】先由ADBC,得到DAC=ACB,然后利用相似三角形的判定定理,做题即可【详解】解:ADBC,DAC=ACB,当B=DCA或BAC=D或 都可得相似故答案为:B=DCA或BAC=D或(答案不唯一)【点睛】此题考查了相似三角形的判定,熟知相似三角形的判定条件是解题的关键:如果两个三角形的三组对应边的比相等,那么这两个三角形相似;如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;如果两个三角形的两个对应角相等,那么这两个三角形相似平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似5、【解析】【分析】根据位似变换的性质计算即可【详解】解:是以点为位似中心,在第三象限内与的相似比为的位似图形若点的坐标为,点的坐标为,即点的坐标为,故答案为:【点睛】本题考查位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,则位似图形对应点的坐标的比等于k或-k三、解答题1、24【解析】【分析】由已知条件设a=2k,则b=3k,c=4k,根据等式得到关于k的方程,解方程求得k,即求得a、b、c的值,从而可求得代数式的值【详解】a:b:c=2:3:4,设a=2k,则b=3k,c=4k2a+3b-2c=15,4k+9k-8k=15,解得:k=3,a=6,b=9,c=12,2、9【解析】【分析】根据ACBD,可证AOCBOD,则SBODSAOC=ODOC2,由此求解即可【详解】解:ACBD,AOCBOD,SBODSAOC=ODOC2,又OC2OD,SBODSAOC=ODOC2=14,SBOD=14SAOC=9【点睛】本题主要考查了相似三角形的性质与判定,熟练掌握两个相似三角形的面积之比等于相似比的平方是解题的关键3、(1)(4,2);(2)见解析;(3)【解析】【分析】(1)根据三角形的外接圆的圆心是三边垂直平分线的交点即可找到点P;(2)根据位似中心与三角形三个顶点的连线将原三角形扩大2倍即可;(3)根据直线和圆的位置关系:当半径大于或等于点A到BC的距离时,A与线段BC有一个或两个公共点即可【详解】解:如图所示:(1)点P即为ABC的外心,P点的坐标为(4,2),故答案为:(4,2);(2)图中画出的ABC即为所求作的图形;(3)观察图形可知:r=时,A与线段BC有一个公共点此时A与线段BC相切,当时,A只经过点,的取值范围是故答案为:【点睛】本题考查了作图位似变换、三角形的外接圆与圆心、直线与圆的位置关系,解决本题的关键是根据位似中心画位似图形4、(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)如图,取AC与MN的交点D,连接BD,BD即为所求作的中线;(2)如图,连接BG,交AC于点E,BE即为所求作的高线;(3)如图,连接BP,交AC于点F,BF即为所求作的角平分线【详解】解:(1)如图,BD即为所求作的中线证明:由题意得AMD=CND=90°,ADM=CDN,又AM=CN=2,AMDCND,AD=CD,BD为ABC的中线(2)如图,BE即为所求作的高线证明:BC=CH=4,CG=AH=1, BCG=CHA,BCGCHA, CBG=HCA,BCG=90°,BCE+ACH=90°,BCE+GBC=90°,BEC=90°,即BEAC,BE为ABC的高线 (3)如图,BF即为所求作的角平分线证明:如图,由题意得AB=32+42=5,AP=12+22=5,BP=22+42=25,APPC=ABBP=BPPC=52,ABPPBC,ABP=PBC,即ABF=CBF, BF为ABC的角平分线【点睛】本题考查了网格内作三角形的角平分线,高线,中线,涉及到全等三角形判定与性质、勾股定理、相似三角形的判定与性质等知识,综合性较强,理解相关知识并灵活运用是解题关键5、(1)证明见解析;(2);(3)、(3,0)、 (-3,8)【解析】【分析】(1)分别在直线与直线上各取一点,再作x轴的垂线,根据“一线三垂直”模型证明相似即可;(2)求出线段AB的中点及直线AB的解析式,根据直线垂直即可求出垂直平分线的解析式;(3)根据AB为边和对角线分类讨论即可,具体计算可以根据菱形对角线互相垂直平分进行计算【详解】(1)设G,P,则点P在直线上,点G在直线上过G作GHx轴于H,过P作PQx轴于Q直线与直线互相垂直即化简得即直线与直线互相垂直时,(2),OB=OC=3,OA=4A(0,4),B(-3,0),C(3,0)直线AB的解析式为直线AC的解析式为AB中点坐标为设线段AB的垂直平分线的解析式为且过点,解得线段AB的垂直平分线的解析式为(3)当AB为对角线时,F为AB的垂直平分线与AC的交点,联立,解得:即F坐标为当AB为菱形的边时,BC关于y轴对称F在直线AB右边时,F与C重合,此时F(3,0)当F在直线AB左边时,ABCM,AM1平分,BC平分A M1x轴,F点坐标为(-3,8)综上所述:F点坐标、(3,0)、 (-3,8)【点睛】本题综合考查一次函数的性质、相似三角形的判定、菱形的性质,解题的关键是抓住材料中的“直线与直线互相垂直时,”