精品试卷北师大版九年级数学下册第一章直角三角形的边角关系专项测评试题(含详解).docx
-
资源ID:32647941
资源大小:743.22KB
全文页数:28页
- 资源格式: DOCX
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品试卷北师大版九年级数学下册第一章直角三角形的边角关系专项测评试题(含详解).docx
九年级数学下册第一章直角三角形的边角关系专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知某水库大坝的横断面为梯形,其中一斜坡的坡度,则斜坡的坡角为( )A30°B45°C60°D150°2、如图,飞机于空中A处测得目标B处的俯角为,此时飞机的高度AC为a,则A,B的距离为( )AatanBCDcos3、如图,在ABC中,C90°,BC1,AB,则下列三角函数值正确的是()AsinABtanA2CcosB2DsinB4、如图,在边长为2的正方形ABCD中,E,F分别为BC,CD的中点,连接AE,BF交于点G,将BCF沿BF对折,得到BPF,延长FP交BA延长线于点Q下列结论错误的是()AAEBFBQBQFCcosBQPDS四边形ECFGSBGE5、如图,某停车场入口的栏杆,从水平位置绕点O旋转到的位置,已知的长为5米若栏杆的旋转角,则栏杆A端升高的高度为( )A米B米C米D米6、如图,在ABC中,C=90°,BC=5,AC=12,则tanB等于( )ABCD7、如图,在直角坐标平面内有一点,那么射线与轴正半轴的夹角的正切值是( )ABCD8、如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m如果在坡度为1:2的山坡上种树,也要求株距为4m,那么相邻两树间的垂面距离为()A4mB8mC2mD1m9、如图,在ABC中,C=90°,ABC=30°,D是AC的中点,则tanDBC的值是( )ABCD10、如图,的顶点都是正方形网格中的格点,则( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在网格中,小正方形的边长均为1,点都在格点上,则的正弦值是_2、cos30°的相反数是 _3、如图,直线MN过正方形ABCD的顶点A,且NAD30°,AB2,P为直线MN上的动点,连BP,将BP绕B点顺时针旋转60°至BQ,连CQ,CQ的最小值是 _4、计算:_5、如图,在A处测得点P在北偏东60°方向上,在B处测得点P在北偏东30°方向上,若AP6千米,则A,B两点的距离为 _千米三、解答题(5小题,每小题10分,共计50分)1、近日,市委、市政府公布了第七批重庆市爱国主义教育基地名单,重庆市育才中学创办的陶行知纪念馆位列其中如图,为了测量陶行知纪念馆的高度,小李在点处放置了高度为1.5米的测角仪,测得纪念馆顶端点的仰角,然后他沿着坡度的斜坡走了6.5米到达点,再沿水平方向走4米就到达了纪念馆底端点(结果精确到0.1,参考数据:,)(1)求点到纪念馆的水平距离;(2)求纪念馆的高度约为多少米?2、如图,平行四边形ABCD中,对角线AC平分BAD,与BD交O一点,直线EF过点O分别交直线AB,CD,BC于E,F,H(1)求证:BOEDOF;(2)若OC2HCBC,OC:BH3,求sinBAC;(3)在AOF中,若AF8,AOOF4,求平行四边形ABCD的面积3、如图,某校的实验楼对面是一幢教学楼,小张在实验楼的窗口C(ACBD)处测得教学楼顶部D的仰角为27°,教学楼底部B的俯角为13°,量得实验楼与教学楼之间的距离AB=20米求教学楼BD(BDAB)的高度(精确到0.1米)(参考数据:sin13°0.22,cos13°0.97,tan13°0.23,sin27°0.45,cos27°0.89,tan27°0.51)4、如图,在中,(1)在线段上求作一点D,使得;(用尺规作图,不写作法,但应保留作图痕迹)(2)若,利用上述作图,求的值5、如图1是一台手机支架,图2是其侧面示意图,AB,BC可分别绕点A,B转动,测量知,当AB,BC转动到,时,求点C到AE的距离(结果保留小数点后一位,参考数据:,)-参考答案-一、单选题1、A【分析】直接利用坡角的定义得出答案【详解】解:某水库大坝的横断面是梯形,其中一斜坡的坡度,设这个斜坡的坡角为,故,故故选:A【点睛】本题主要考查了解直角三角形的应用,解题的关键是根据题意正确得出坡角与坡比的关系2、C【分析】根据题意可知,根据,即可求得【详解】解:飞机于空中A处测得目标B处的俯角为,AC为a,故选C【点睛】本题考查了正弦的应用,俯角的意义,掌握正弦的概念是解题的关键3、D【分析】根据正弦、余弦及正切的定义直接进行排除选项【详解】解:在ABC中,C90°,BC1,AB,;故选D【点睛】本题主要考查三角函数,熟练掌握三角函数的求法是解题的关键4、C【分析】BCF沿BF对折,得到BPF,利用角的关系求出QF=QB,即可判断B;首先证明ABEBCF,再利用角的关系求得BGE=90°,即可得到AEBF即可判断A;利用QF=QB,解出BP,QB,根据正弦的定义即可求解即可判断C;可证BGE与BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解即可判断D【详解】解:四边形ABCD是正方形,C=90°,ABCD,由折叠的性质得:FPFC,PFBBFC,FPB=C90°,CDAB,CFBABF,ABFPFB,QFQB,故B选项不符合题意;E,F分别是正方形ABCD边BC,CD的中点,CD=BC,ABE=C=90°,CFBE,在ABE和BCF中, ,ABEBCF(SAS),BAECBF,又BAE+BEA90°,CBF+BEA90°,BGE90°,AEBF,故A选项不符合题意;令PFk(k0),则PB2k,在RtBPQ中,设QBx,x2(xk)2+4k2,x,cosBQP,故C选项符合题意;BGEBCF,GBECBF,BGEBCF,BEBC,BFBC,BE:BF1:,BGE的面积:BCF的面积1:5,S四边形ECFG4SBGE,故D选项不符合题意故选C【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,相似三角形的性质与判定,勾股定理,解直角三角形,解题的关键在于能够熟练掌握相关知识进行求解5、C【分析】过点A作ACAB于点C,根据锐角三角函数的定义即可求出答案【详解】解:过点A作ACAB于点C,由题意可知:AO=AO=5,sin=,AC=5sin,故选:C【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型6、B【分析】根据锐角三角函数求解即可【详解】解:在RtABC中,C90°,BC5,AC12,所以tanB,故选:B【点睛】本题考查锐角三角函数,掌握正切的定义:正切是指是直角三角形中,某一锐角的对边与另一相邻直角边的比,是正确解答的关键7、D【分析】作PMx轴于点M,构造直角三角形,根据三角函数的定义求解【详解】解:作PMx轴于点M,P(6,8),OM=6,PM=8,tan=故选:D【点睛】本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题8、C【分析】根据坡度的概念求出AC,得到答案【详解】解:如图,AB的坡度为1:2,即,解得,AC=2,故选:C【点睛】本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键9、D【分析】根据正切的定义以及,设,则,结合题意求得,进而即可求得【详解】解:在ABC中,C=90°,ABC=30°,设,则, D是AC的中点,故选D【点睛】本题考查了正切的定义,特殊角的三角函数值,掌握正切的定义是解题的关键10、D【分析】根据题意和图形,可以得到AC、BC和AB的长,然后根据等面积法可以求得CD的长,从而可以得到的值【详解】解:作CDAB,交AB于点D,由图可得,AC,BC2,AB,解得,CD,sinBAC,故选:D【点睛】本题考查解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答二、填空题1、#【分析】根据题意过点B作BDAC于点D,过点C作CEAB于点E,则BD=AD=3,CD=1,利用勾股定理可求出AB,BC的长,利用面积法可求出CE的长,再利用正弦的定义即可求出ABC的正弦值【详解】解:过点B作BDAC于点D,过点C作CEAB于点E,则BD=AD=3,CD=1,如图所示,ACBD=ABCE,即×2×3=×3CE,CE=,故答案为:【点睛】本题考查解直角三角形和勾股定理以及三角形的面积,利用面积法及勾股定理求出CE,BC的长度是解题的关键2、#【分析】先将特殊角的三角函数值代入求解,再求出其相反数【详解】解:cos30°=,所以其相反数为故答案为:【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值以及相反数的概念3、#【分析】如图,连接交于 则 先证明 把绕顺时针旋转得到 证明 可得三点共线,在上运动,过作于 则重合时,最短,再求解 从而可得答案.【详解】解:如图,连接PQ交于 则 是等边三角形, 正方形 把绕顺时针旋转得到 则 三点共线, 在上运动,过作于 则重合时,最短, 是等边三角形,记交于 所以CQ的最小值是,故答案为:【点睛】本题考查的是正方形的性质,相似三角形的性质,锐角三角函数的应用,得到的运动轨迹是解本题的关键.4、【分析】先求出特殊角的三角函数值,再计算即可【详解】解:=【点睛】本题考查了特殊角三角函数值的计算,解题关键是熟记特殊角三角函数值5、6【分析】证明ABPB,在RtPAC中,求出PC3千米,在RtPBC中,解直角三角形可求出PB的长,则可得出答案【详解】解:由题意知,PAB30°,PBC60°,APBPBCPAB60°30°30°,PABAPB,ABPB,在RtPAC中,AP6千米,PCPA3千米,在RtPBC中,sinPBC,PB6千米AB6千米故答案为:6【点睛】本题考查了解直角三角形应用题,方向角:指正北或指正南方向线与目标方向线所成的小于90°的角叫做方向角注意在描述方向角时,一般应先说北或南,再说偏西或偏东多少度,而不说成东偏北(南)多少度或西偏北(南)多少度.当方向角在45°方向上时,又常常说成东南、东北、西南、西北方向三、解答题1、(1)10米;(2)11.3米【分析】(1)AB延长交地面于H,过点F作FGCH于G,过点D的水平线交AH与E,根据坡度的斜坡走了6.5米到达点,设FG=x,CG=2.4x,CF=6.5米,在RtFGC中,根据勾股定理得,即,解方程米,得出CG=2,4x=6米,可证四边形BHGF为矩形,得出BF=HG=4米,BH=FG=2.5米,CH=HG +CG=4+6=10米,再证四边形EHCD为矩形,得出DE=CH=10米;(2)在RtAED中,DE=10米,利用三角函数AE=DE·tan51°10×1.23=12.3米即可再利用线段和差AB=AE+EH-BH代入数据计算即可【详解】解:(1) AB延长交地面于H,过点F作FGCH于G,过点D的水平线交AH与E,坡度的斜坡走了6.5米到达点,设FG=x,CG=2.4x,CF=6.5米,在RtFGC中,根据勾股定理得,即,解得米,CG=2,4x=6米,BFCH,AHCH,BFAH,FBH=BHG=90°,FGCH,FGH=90°,四边形BHGF为矩形,BF=HG=4米,BH=FG=2.5米,CH=HG +CG=4+6=10米,CDCH,DCH=90°,DECH,DEH+BHG=180°,DEH=180°-BHG=90°,DEH=DCH=BHG=90°,四边形EHCD为矩形,DE=CH=10米, (2)在RtAED中,DE=10米,AE=DE·tan51°10×1.23=12.3米,BH=2.5米,EH=CD=1.5米AB=AE+EH-BH=12.3+1.5-2.5=11.3米【点睛】本题考查解直角三角形,利用辅助线构造矩形,直角三角形,勾股定理,直接开平方法解一元二次方程,掌握解直角三角形的方法,矩形性质,直角三角形性质,勾股定理的应用,直接开平方法解一元二次方程是解题关键2、(1)证明见解析;(2);(3)80【分析】(1)先根据平行四边形的性质可得,再根据平行线的性质可得,然后根据三角形全等的判定定理即可得证;(2)先根据菱形的判定证出平行四边形是菱形,再根据菱形的性质可得,然后设,从而可得,代入解一元二次方程可得,由此可得,最后在中,利用正弦三角函数的定义即可得;(3)先根据平行四边形的判定证出四边形是平行四边形,再根据矩形的判定证出平行四边形是矩形,根据矩形的性质可得,然后利用勾股定理可得,设,从而可得,在中,利用勾股定理可得,最后利用平行四边形的面积公式即可得【详解】证明:(1)四边形是平行四边形,在和中,;(2),平分,平行四边形是菱形,设可得,由得:,解得或(不符题意,舍去),在中,;(3)由(1)已证:,即,又,即,四边形是平行四边形,平行四边形是矩形,设,则,在中,即,解得,即,则平行四边形的面积为【点睛】本题考查了三角形全等的判定定理与性质、菱形的判定与性质、矩形的判定与性质、一元二次方程的应用、正弦三角函数等知识点,熟练掌握特殊平行四边形的判定与性质是解题关键3、教学楼BD的高度约为14.8米【分析】由题意过点C作CHBD,垂足为点H,进而依据和以及BD =HD+HB进行分析计算即可得出答案.【详解】解: 过点C作CHBD,垂足为点H, 由题意,得DCH=27°,HCB=13°,AB=CH=20(米), 在RtDHC中, 在RtHCB中,BD =HD+HB10.2 +4.6=14.8(米)答:教学楼BD的高度约为14.8米【点睛】本题考查解直角三角形的应用-仰角俯角问题,熟练掌握锐角三角函数的定义是解答本题的关键4、(1)见解析;(2)【分析】(1)作的垂直平分线,交于点,则点即为所求;(2)根据(1)的结论可得,设,则,进而根据正切的定义即可求得答案【详解】解:(1)如图,作的垂直平分线,交于点,则点即为所求,连接 (2)设,则【点睛】本题考查了等腰三角形的性质,三角形的外角性质,垂直平分线的性质,正切的定义,勾股定理,掌握以上知识是解题的关键5、6.3cm【分析】如图,作CDAE于点D,作BGAE于点G,作CFBG于点F,则四边形CDGF是矩形,即CD=FG,然后分别解直角ABG和直角BCF求出BG和BF的长,最后根据线段的和差即可解答【详解】解:如图,作CDAE于点D,作BGAE于点G,作CFBG于点F,则四边形CDGF是矩形,CD=FG,在直角ABG中,(cm),ABG=30°,CBF=20°,BCF=70°,在直角BCF中,BCF=70°,(cm),CD=FG=(cm),即点到的距离为6.3cm【点睛】本题考查了解直角三角形的应用,正确添加辅助线构建直角三角形、灵活运用解直角三角形解决实际问题成为解答本题的关键