精品试卷沪科版九年级数学下册第24章圆专项练习试题(含解析).docx
-
资源ID:32648148
资源大小:875.81KB
全文页数:25页
- 资源格式: DOCX
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品试卷沪科版九年级数学下册第24章圆专项练习试题(含解析).docx
沪科版九年级数学下册第24章圆专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,PA,PB是O的切线,A,B是切点,点C为O上一点,若ACB70°,则P的度数为( ) A70°B50°C20°D40°2、如图,为的直径,为外一点,过作的切线,切点为,连接交于,点在右侧的半圆周上运动(不与,重合),则的大小是( )A19°B38°C52°D76°3、如图,AB,CD是O的弦,且,若,则的度数为( )A30°B40°C45°D60°4、如图,AB是的直径,的弦DC的延长线与AB的延长线相交于点P,于点E,则阴影部分的面积为( )ABCD5、如图,AB是O的直径,弦,则阴影部分图形的面积为( )ABCD6、下列四个图案中,是中心对称图形但不是轴对称图形的是( )ABCD7、下列叙述正确的有( )个.(1)随着的增大而增大;(2)如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;(3)斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;(4)三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;(5)以为三边长度的三角形,不是直角三角形A0B1C2D38、下列图形中,既是轴对称图形,又是中心对称图形的是()ABCD9、如图,在中,将绕点C逆时针旋转90°得到,则的度数为( )A105°B120°C135°D150°10、在下列图形中,既是中心对称图形又是轴对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、两直角边分别为6、8,那么的内接圆的半径为_2、如图,在平面直角坐标系中,一次函数y2x4的图像与x轴、y轴分别交于点A、B,将直线AB绕点B顺时针旋转45°,交x轴于点C,则直线BC的函数表达式为_3、已知圆O的圆心到直线l的距离为2,且圆的半径是方程x25x+60的根,则直线l与圆O的的位置关系是_4、如图,正六边形ABCDEF内接于O,若O的周长为8,则正六边形的边长为_ 5、一个正多边形的中心角是,则这个正多边形的边数为_三、解答题(5小题,每小题10分,共计50分)1、如图,AB是的直径,CD是的一条弦,且于点E(1)求证:;(2)若,求的半径2、如图,已知弓形的长,弓高,(,并经过圆心O)(1)请利用尺规作图的方法找到圆心O;(2)求弓形所在的半径的长3、如图,在O中,点E是弦CD的中点,过点O,E作直径AB(AEBE),连接BD,过点C作CFBD交AB于点G,交O于点F,连接AF求证:AGAF4、已知:RtABC中,ACB90°,ABC60°,将ABC绕点B按顺时针方向旋转(1)当C转到AB边上点C位置时,A转到A,(如图1所示)直线CC和AA相交于点D,试判断线段AD和线段AD之间的数量关系,并证明你的结论(2)将RtABC继续旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)将RtABC旅转至A、C、A三点在一条直线上时,请直接写出此时旋转角的度数5、在所给的的正方形网格中,按下列要求操作:(单位正方形的边长为1)(1)请在第二象限内的格点上找一点,使是以为底的等腰三角形,且腰长是无理数,求点的坐标;(2)画出以点为中心,旋转180°后的,并求的面积-参考答案-一、单选题1、D【分析】首先连接OA,OB,由PA,PB为O的切线,根据切线的性质,即可得OAP=OBP=90°,又由圆周角定理,可求得AOB的度数,继而可求得答案【详解】解:连接OA,OB,PA,PB为O的切线,OAP=OBP=90°,ACB=70°,AOB=2P=140°,P=360°-OAP-OBP-AOB=40°故选:D【点睛】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用2、B【分析】连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.【详解】解:连接 为的直径, 为的切线, 故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.3、B【分析】由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得【详解】解:,故选:B【点睛】题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键4、B【分析】由垂径定理可知,AE=CE,则阴影部分的面积等于扇形AOD的面积,求出,然后利用扇形面积公式,即可求出答案【详解】解:根据题意,如图:AB是的直径,OD是半径,AE=CE,阴影CED的面积等于AED的面积,;故选:B【点睛】本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算5、D【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知COE=60°然后通过解直角三角形求得线段OC,然后证明OCEBDE,得到求出扇形COB面积,即可得出答案【详解】解:设AB与CD交于点E,AB是O的直径,弦CDAB,CD=2,如图,CE=CD=,CEO=DEB=90°,CDB=30°,COB=2CDB=60°,OCE=30°,又,即,在OCE和BDE中,OCEBDE(AAS),阴影部分的面积S=S扇形COB=,故选D【点睛】本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键6、D【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项符合题意;故选:D【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合7、D【分析】根据反比例函数的性质,得当或者时,随着的增大而增大;根据直径所对圆周角为直角的性质,得斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;根据垂直平分线的性质,得三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;根据勾股定理逆定理、完全平方公式的性质计算,可判断直角三角形,即可完成求解【详解】当或者时,随着的增大而增大,故(1)不正确;如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;,故(2)正确;圆的直径所对的圆周角为直角斜边为的直角三角形顶点A的轨迹是以中点为圆心,长为直径的圆,故(3)正确;三角形三边的垂直平分线的交点到三角形三个顶点的距离相等,故(4)正确;以为三边长度的三角形,是直角三角形,故(5)错误;故选:D【点睛】本题考查了三角形、垂直平分线、反比例函数、圆、勾股定理逆定理的知识;解题的关键是熟练掌握反比例函数、垂直平分线、圆周角、勾股定理逆定理的性质,从而完成求解8、C【详解】解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;选项B不是轴对称图形,是中心对称图形,故B不符合题意;选项C既是轴对称图形,也是中心对称图形,故C符合题意;选项D是轴对称图形,不是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.9、B【分析】由题意易得,然后根据三角形外角的性质可求解【详解】解:由旋转的性质可得:,;故选B【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键10、B【分析】根据中心对称图形与轴对称图形的定义解答即可.【详解】解:A.是轴对称图形,不是中心对称图形,不符合题意;B既是中心对称图形又是轴对称图形,符合题意;C. 是轴对称图形,不是中心对称图形,不符合题意;D. 既不是中心对称图形,也不是轴对称图形,不符合题意.故选B.【点睛】本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.二、填空题1、5【分析】直角三角形外接圆的直径是斜边的长【详解】解:由勾股定理得:AB=10,ACB=90°,AB是O的直径,这个三角形的外接圆直径是10,这个三角形的外接圆半径长为5,故答案为:5【点睛】本题考查了三角形的外接圆与外心,知道直角三角形外接圆的直径是斜边的长是关键;外心是三边垂直平分线的交点,外心到三个顶点的距离相等2、#【分析】先求出点A、B的坐标,过点A作AFAB,交直线BC于点F,过点F作EFx轴,垂足为E,然后由全等三角形的判定和性质,等腰直角三角形的性质,求出点F的坐标,再利用待定系数法,即可求出答案【详解】解:一次函数y2x4的图像与x轴、y轴分别交于点A、B两点,令,则;令,则,点A为(2,0),点B为(0,4),;过点A作AFAB,交直线BC于点F,过点F作EFx轴,垂足为E,如图,ABF是等腰直角三角形,AF=AB,ABOFAE(AAS),AO=FE,BO=AE,点F的坐标为(,);设直线BC为,则,解得:,直线BC的函数表达式为;故答案为:;【点睛】本题考查了一次函数的性质,全等三角形的判定和性质,等腰三角形的判定和性质,以及旋转的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题3、相切或相交【详解】首先求出方程的根,再利用半径长度,由点O到直线l的距离为d,若dr,则直线与圆相交;若dr,则直线于圆相切;若dr,则直线与圆相离,从而得出答案【分析】解:x25x+60,(x2)(x3)0,解得:x12,x23,圆的半径是方程x25x+60的根,即圆的半径为2或3,当半径为2时,直线l与圆O的的位置关系是相切,当半径为3时,直线l与圆O的的位置关系是相交,综上所述,直线l与圆O的的位置关系是相切或相交故答案为:相切或相交【点睛】本题考查的是直线与圆的位置关系,因式分解法解一元二次方程,解决此类问题可通过比较圆心到直线距离d与圆的半径大小关系完成判定4、4【分析】由周长公式可得O半径为4,再由正多边形的中心角公式可得正六边形ABCDEF中心角为,即可知正六边形ABCDEF为6个边长为4的正三角形组成的,则可求得六边形ABCDEF边长【详解】O的周长为8O半径为4正六边形ABCDEF内接于O正六边形ABCDEF中心角为正六边形ABCDEF为6个边长为4的正三角形组成的正六边形ABCDEF边长为4.故答案为:4【点睛】本题考查了正多边形的中心角公式,正n边形的每个中心角都等于,由中心角为得出正六边形ABCDEF为6个边长为4的正三角形组成的是解题的关键5、九9【分析】根据正多边形的每个中心角相等,且所有中心角的度数和为360°进行求解即可【详解】解:设这个正多边形的边数为n,这个正多边形的中心角是40°,这个正多边形是九边形,故答案为:九【点睛】本题主要考查了正多边形的性质,熟知正多边形中心角的度数和为360度是解题的关键三、解答题1、(1)见解析;(2)3【分析】(1)根据D=B,BCO=B,代换证明;(2)根据垂径定理,得CE=,利用勾股定理计算即可【详解】(1)证明:OCOB,BCOB;,BD;BCOD;(2)解:AB是O的直径,且CDAB于点E,CECD,CD,CE,在RtOCE中,OE1,;O的半径为3【点睛】本题考查了圆周角定理,垂径定理,勾股定理,结合图形,熟练运用三个定理是解题的关键2、(1)见解析(2)10【分析】(1)作BC的垂直平分线,与直线CD的交点即为圆心;(2)连接OA,根据勾股定理列出方程即可求解(1)解:如图所示,点O即是圆心;(2)解:连接OA,并经过圆心O,解得,答:半径为10【点睛】本题考查了垂径定理和确定圆心,解题关键是熟练作图确定圆心,利用垂径定理和勾股定理求半径3、见解析【分析】由题意易得ABCD,则有,由平行线的性质可得,然后可得,进而问题可求证【详解】证明:AB为O的直径,点E是弦CD的中点,ABCD,CFBD,【点睛】本题主要考查垂径定理、平行线的性质及圆周角定理,熟练掌握垂径定理、平行线的性质及圆周角定理是解题的关键4、(1),证明见解析(2)成立,证明见解析(3)【分析】(1)设,先根据直角三角形的性质可得,再根据旋转的性质可得,然后根据等边三角形的判定与性质可得,都是等边三角形,从而可得,由此即可得出结论;(2)在上截取,连接,先根据旋转的性质可得,从而可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,然后根据三角形的外角性质可得,最后根据等腰三角形的判定可得,由此即可得出结论;(3)如图(见解析),先根据旋转的性质可得,再根据直角三角形全等的判定定理证出,然后根据全等三角形的性质可得,最后根据旋转角即可得(1)解:,证明如下:设,在中,由旋转的性质得:,和都是等边三角形,是等边三角形,;(2)解:成立,证明如下:如图,在上截取,连接,由旋转的性质得:,在和中,;(3)解:如图,当点三点在一条直线上时,由旋转的性质得:,在和中,则旋转角【点睛】本题考查了旋转的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键5、(1)图见解析,点的坐标为(2)图见解析,4【分析】(1)根据题意,腰长为无理数且为以AB为底的等腰三角形,只在第二象限,作图即可确定点,然后写出点的坐标即可;(2)现确定旋转后的点,然后依次连接即可,根据旋转前后三角形的面积不变,利用表格及勾股定理确定三角形的底和高,即可得出面积(1)解:如图所示,点的坐标为;,为无理数,符合题意;(2)如图所示:点的坐标,点的坐标为,旋转180°后的的面积等于的面积, ,的面积为4【点睛】题目主要考查等腰三角形的定义及旋转图形的作法,理解题意,熟练掌握在坐标系中旋转图形的作法是解题关键