欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    精品试题北师大版九年级数学下册第二章二次函数月考练习题(精选).docx

    • 资源ID:32648641       资源大小:556.64KB        全文页数:25页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    精品试题北师大版九年级数学下册第二章二次函数月考练习题(精选).docx

    北师大版九年级数学下册第二章二次函数月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知抛物线经过,若时,则,的大小关系是( )ABCD2、在求解方程时,先在平面直角坐标系中画出函数的图象,观察图象与轴的两个交点,这两个交点的横坐标可以看作是方程的近似解,分析右图中的信息,方程的近似解是( )A,B,C,D,3、在平面直角坐标系中,将二次函数的图象在轴上方的部分沿轴翻折后,所得新函数的图象如图所示(实线部分)若直线与新函数的图象有3个公共点,则的值是( )A0B-3C-4D-54、已知二次函数y(xm)2m+1(m为常数)二次函数图象的顶点始终在直线yx+1上 当x2时,y随x的增大而增大,则m=2点A(x1,y1)与点B(x2,y2)在函数图象上,若x1x2,x1+x22m,则y1y2 其中,正确结论的个数是( )A0个B1个C2个D3个5、将二次函数的图象沿x轴向左平移2个单位长度,再沿y轴向上平移3个单位长度,得到的函数表达式是( )ABCD6、下列图形既是轴对称图形又是中心对称图形的是( )A等边三角形B双曲线C抛物线D平行四边形7、在同一平面直角坐标系xOy中,一次函数y2x与二次函数的图象可能是()ABCD8、抛物线的顶点坐标是( )A(1,2)B(1,)C(,2)D(,)9、一次函数与二次函数在同一平面直角坐标系中的图象大致是( )ABCD10、已知二次函数yx22x1图象上的三点A(1,y1),B(2,y2),C(4,y3),则y1、y2、y3的大小关系为( )Ay1y2y3By2y1y3Cy1y3y2Dy3y1y2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知二次函数的图象如图所示,则下列结论:;中正确的是_2、将抛物线向下平移3个单位长度,所得到的抛物线解析式为_3、抛物线yx28x4与直线y5的交点坐标是_4、二次函数的图像有最_点(填“高”或“低”)5、抛物线的对称轴及部分图象如图所示,则关于x的一元二次方程的两根为_三、解答题(5小题,每小题10分,共计50分)1、已知二次函数y9x26axa2+2a(1)当a1时,求该二次函数的最大值;(2)若该二次函数图象与坐标轴有两个交点,求实数a的值;(3)若该二次函数在x有最大值3,求实数a的值2、如图1,在平面直角坐标系中,抛物线经过点,且与直线在第二象限交于点,过点作轴,垂足为点若是直线上方该抛物线上的一个动点,过点作轴于点,交于点,连接,(1)求抛物线的解析式;(2)求的面积的最大值;(3)连接交于点,如图2,线段与能否互相平分?若能,请求出点的坐标;若不能,请说明理由3、已知抛物线(m为常数,且m0)(1)抛物线的对称轴为 (2)当此函数经过(3,3)时,求此函数的表达式,并直接写出函数值y随x的增大而增大时,x的取值范围(3)当1x2时,y有最小值3,求y的最大值(4)设直线x1分别与抛物线交于点M、与x轴交于N,当点M、N不重合时,过M作y轴的垂线与此函数图象的另一个交点为若,直接写出m的值4、如图,抛物线yx2+bx2过点A(1,m)和B(5,m),与y轴交于点C(1)求b和m的值;(2)连接AB,AB与y轴交于点D请求出:点D的坐标;ABC的面积5、某篮球队员的一次投篮命中,篮球从出手到命中行进的轨迹可以近似看作抛物线的一部分,表示篮球距地面的高度(单位:m)与行进的水平距离(单位:m)之间关系的图象如图所示已知篮球出手位置与篮筐的水平距离为4.5m,篮筐距地面的高度为3.05m;当篮球行进的水平距离为3m时,篮球距地面的高度达到最大为3.3m(1)图中点表示篮筐,其坐标为_,篮球行进的最高点的坐标为_;(2)求篮球出手时距地面的高度-参考答案-一、单选题1、C【分析】由,纵坐标相同可以看出AB关于对称轴对称,即对称轴为,再结合C、D坐标可得C、D关于对称轴对称,再根据,比较m和p的大小即可【详解】,对称轴为,关于对称轴对称,即在对称轴右边当也在对称轴右边时此时由y随x的增大而减小,当在对称轴右边时此时由y随x的增大而减小,故选:C【点睛】本题考查二次函数的性质,解题的关键是根据AB纵坐标相同可以看出A、B关于对称轴对称2、D【分析】由题意观察的图象,进而根据与轴的两个交点的横坐标进行分析即可.【详解】解:因为两个交点的横坐标可以看作是方程的近似解,两个交点的横坐标为:,所以方程的近似解是,.故选:D.【点睛】本题考查二次函数图象与轴的交点问题,熟练掌握并结论方程思想可知与轴的两个交点的横坐标可以看作是方程的近似解进行分析.3、C【分析】由图可知,当与新函数有3个交点时,过新函数的顶点,求出点的坐标,其纵坐标即为所求【详解】解:原二次函数,顶点,翻折后点对应的点为,当直线与新函数的图象有3个公共点,直线过点,此时故选:C.【点睛】本题主要考查了翻折的性质,抛物线的性质,确定翻折后的顶点坐标;利用数形结合的方法是解本题的关键4、B【分析】由顶点坐标(m,-m+1),可得x=m,y=-m+1,即可证明顶点在直线y=-x+1上;根据二次函数的性质,当时,y随x的增大而增大,可知;由,根据已知可以判断,即可判断【详解】解:证明: 图象的顶点为(m,-m+1),设顶点坐标为(x,y),则x=m,y=-m+1,y=-x+1,即顶点始终在直线y=-x+1上, 正确;,对称轴,当时,y随x的增大而增大,时,y随x的增大而增大, 不正确; 与点 在函数图象上,x1x2,x1+x22m, 不正确故选:B【点睛】本题考查二次函数图像和性质,函数值大小比较等,解题的关键是掌握一元二次方程根与系数的关系及做差法比较大小5、D【分析】根据二次函数的平移方法“左加右减,上加下减”可直接进行排除选项【详解】解:由二次函数的图象沿x轴向左平移2个单位长度,再沿y轴向上平移3个单位长度,得到的函数表达式是;故选D【点睛】本题主要考查二次函数图象的平移,熟练掌握二次函数图象的平移是解题的关键6、B【分析】根据“如果一个平面图形沿一条直线折叠,直线两旁部分能够互相重合,那么这个图形就叫做轴对称图形”及“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形”,结合二次函数的图象及反比例函数的图象,进而问题可求解【详解】解:A、等边三角形是轴对称图形,但不是中心对称图形,故不符合题意;B、双曲线是中心对称图形,也是轴对称图形,故符合题意;C、抛物线是轴对称图形,但不是中心对称图形,故不符合题意;D、平行四边形是中心对称图形但不是轴对称图形,故不符合题意;故选B【点睛】本题主要考查轴对称图形、中心对称图形及二次函数的图象、反比例函数的图象,熟练掌握轴对称图形、中心对称图形及二次函数的图象、反比例函数的图象是解题的关键7、C【分析】先由一次函数的性质判断,然后结合二次函数中a0时,a0时,分别进行判断,即可得到答案【详解】解:一次函数y2x,一次函数的图像经过原点,且y随x的增大而增大,故排除A、B选项;在二次函数中,当a0时,开口向上,且抛物线顶点在y的负半轴上,当a0时,开口向下,且抛物线顶点在y的负半轴上,D不符合题意,C符合题意;故选:C【点睛】此题主要考查了二次函数与一次函数图象,利用二次函数的图象和一次函数的图象的特点求解8、C【分析】根据顶点式直接写出顶点坐标即可【详解】解:抛物线的顶点坐标是(,2),故选:C【点睛】本题考查了抛物线的顶点坐标,解题关键是明确二次函数顶点式的顶点坐标为9、C【分析】逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论【详解】解:A.二次函数图象开口向下,对称轴在y轴右侧,a<0,b>0,一次函数图象应该过第一、二、四象限,A错误;B.二次函数图象开口向上,对称轴在y轴右侧,a>0,b<0,一次函数图象应该过第一、三、四象限,B错误;C.二次函数图象开口向下,对称轴在y轴左侧,a<0,b<0,一次函数图象应该过第二、三、四象限,C正确;D. 二次函数图象开口向上,对称轴在y轴右侧,a>0,b<0,一次函数图象应该过第一、三、四象限,D错误;故选C【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,根据a、b的正负确定一次函数图象经过的象限是解题的关键10、D【分析】由二次函数图象开口向下可得离对称轴越近的点y值越大,进而求解【详解】解:y=-x2+2x+1=-(x-1)2+2,抛物线开口向下,且对称轴为直线x=1,4-11-(-1)2-1,y2y1y3,故选:D【点睛】本题考查二次函数的性质,解题关键是掌握二次函数图象的性质,根据二次函数图象作答,不需要求函数值二、填空题1、【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=3时二次函数的值的情况进行推理,进而对所得结论进行判断【详解】根据图示知,该函数图象的开口向下,a<0;故正确;当x=3时,故错误;该函数图象交于y轴的正半轴,c>0,故正确;观察图像,结合抛物线的对称轴可知:,故正确;所以四项正确故答案为:【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换2、#【分析】根据抛物线的平移规律:上加下减,左加右减解答即可【详解】解:将抛物线向下平移3个单位长度,所得到的抛物线解析式为故答案为:【点睛】本题考查了抛物线的平移,掌握平移规律是解题的关键3、(9,5)和(-1,5)【分析】解方程x28x45即可得到答案【详解】解:当yx28x4中y5时,得x28x45,抛物线yx28x4与直线y5的交点坐标是(9,5)和(-1,5),故答案为:(9,5)和(-1,5)【点睛】此题考查了抛物线与直线的交点坐标,解一元二次方程,正确理解直线与抛物线交点坐标的求法是解题的关键4、高【分析】根据二次函数图象的开口即可解答【详解】解:二次函数二次函数的图象开口向下二次函数的图像有最高点故答案是高【点睛】本题主要考查了二次函数的性质,对于y=ax2+bx+c(a0),当a0,函数图象开口方向向上,函数图象开口方向向下5、故答案为:-2; 【点睛】本题考查了二次函数的三种形式:一般式:yax2bxc(a,b,c是常数,a0); 顶点式:ya(xh)2k(a,h,k是常数,a0),其中(h,k)为顶点坐标,该形式的优势是能直接根据解析式得到抛物线的顶点坐标为(h,k);交点式:ya(xx1)(xx2)(a,b,c是常数,a0),该形式的优势是能直接根据解析式得到抛物线与x轴的两个交点坐标(x1,0),(x2,0)3,【分析】利用图象法可得,再根据抛物线的对称性求得,即可求解【详解】解:根据图象可得:抛物线与x轴的交点为,对称轴为方程的解为,故答案为:,【点睛】本题考查了用图象法解一元二次方程的问题,掌握图象法解一元二次方程的方法、抛物线的性质是解题的关键三、解答题1、(1)2;(2)(3)或【分析】(1)将代入解析式,进而根据顶点公式求得最大值;(2)由于二次函数与轴必有一个交点,且为,分类讨论,令,与轴1个交点,即一元二次方程根的判别式等于0,与轴1个交点,且不为,若与轴有两个交点,则必过原点,进而即可求得答案;(3)根据题意分三种情况讨论,进而解一元二次方程即可,【详解】解:(1)将代入解析式y9x26axa2+2a,即,当时,该二次函数的最大值为(2)令,解得即该抛物线为与坐标轴的交点为原点,只有1个交点,不符合题意则该抛物线与轴有两个交点,且有一个必过原点即,解得或(舍)综上所述,(3)y9x26axa2+2a的对称轴为若,即,抛物线的开口向下,当时,该二次函数在x有最大值3,解得,舍去若,即当x时,随的增大而减小,当时,取得最大值为解得若,即当x时,随的增大而增大,当时,取得最大值为解得综上所述或【点睛】本题考查了二次函数的性质,二次函数与坐标轴交点问题,二次函数的最值问题,掌握二次函数的性质是解题的关键2、(1);(2)8;(3)能,点的坐标为或【分析】(1)先利用求解的坐标,再利用待定系数法求解抛物线的解析式即可;(2)设点,则点,再求解 列二次函数关系式,利用二次函数的性质求解面积的最大值即可.(3)如图,连接,由线段与相互平分,可得四边形是平行四边形,则有,再列方程,解方程可得答案.【详解】解:(1) 轴,点, ,又抛物线经过, 解得: 抛物线的解析式为 (2)设点,则点, ,时,; (3)线段与能相互平分理由如下:如图,连接线段与相互平分,四边形是平行四边形, ,或当时,则 为的中点,点的坐标为当时, 则 为的中点,点的坐标为点的坐标为或【点睛】本题考查的是利用待定系数法求解二次函数的解析式,二次函数的性质,二次函数与平行四边形,掌握“列面积的二次函数关系式,利用对角线互相平分得到平行四边形,再利用平行四边形的对边相等列方程”是解本题的关键.3、(1)直线x=1;(2),x1;(3)17或;(4)【分析】(1)根据抛物线的对称轴公式求解即可;(2)先把点(3,3)代入抛物线的解析式求出m,再根据二次函数的性质解答即可;(3)分m0与m0两种情况,根据抛物线的性质求解即可;(4)分m>0与m<0两种情况,结合二次函数的图象与,求解即可;【详解】解:(1)抛物线的对称轴是直线:,故答案为:直线x=1;(2)当此函数经过(3,3)时,解得,此函数的表达式为,抛物线的开口向上,当x1时,函数值y随x的增大而增大;(3)当m0时,抛物线开口向上,1x2,当x=1时,y有最小值3,m-2m+2=-3,解得m=5,此时抛物线的解析式是,则当x=-1时,y有最大值为5+10+2=17;当m<0时,抛物线开口向下,1x2,当x=-1时,y有最小值3,m+2m+2=-3,解得m=,此时抛物线的解析式是,则当x=1时,y有最大值为;综上,y的最大值为17或;(4)当m>0时,则M(-1,3m+2),N(-1,0),M(3,3m+2),MM=4,MN=3m+2,若,则4=3(3m+2),解得(不合题意,舍去);当m<0时,如图,MM=4,MN=-3m-2,若,则4=-3(3m+2),解得;综上,若,则【点睛】本题是二次函数的综合题,主要考查了二次函数的图象和性质以及二次函数图象上点的坐标特征,熟练掌握二次函数的图形与性质、灵活应用数形结合思想和分类思想是解题的关键4、(1)b=-4,m=3;(2)点D的坐标为(0,3);15【分析】(1)根据点A(-1,m)和B(5,m)是抛物线y=x2+bx-2上的两点,可以得到b的值,即可得到函数解析式,把A(-1,m)代入解析式即可求得m的值;(2)由m的值即可求得点D的坐标;求得C的坐标,再根据三角形面积公式即可求得【详解】解:(1)点A(-1,m)和B(5,m)是抛物线y=x2+bx-2上的两点,解得,b=-4,抛物线解析式为y=x2-4x-2,把A(-1,m)代入得,m=1+4-2=3;(2)m=3,点D的坐标为(0,3);由y=x2-4x-2可知,抛物线与y轴交点C的坐标为(0,-2),OC=2,A(-1,4)和B(5,4),AB=6,SABC=×6×(2+3)=15【点睛】本题考查了二次函数图象上点的坐标特征、三角形的面积,解答本题的关键是明确题意,利用二次函数的性质解答5、(1)(4.5,3.05),(3,3.3);(2)2.3米【分析】(1)根据题意,直接写出坐标即可;(2)设抛物线的解析式为:,从而求出a的值,再把x=0代入解析式,即可求解【详解】(1)由题意得:点坐标为(4.5,3.05),的坐标为(3,3.3),故答案是:(4.5,3.05),(3,3.3);(2)设抛物线的解析式为:,把点坐标(4.5,3.05),代入得,解得:,当x=0时,答:篮球出手时距地面的高度为2.3米【点睛】考查了二次函数的应用,利用二次函数的顶点式,求出函数解析式是解题的关键

    注意事项

    本文(精品试题北师大版九年级数学下册第二章二次函数月考练习题(精选).docx)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开