考点解析:北师大版七年级数学下册第一章整式的乘除专题训练试题.docx
-
资源ID:32652070
资源大小:209.03KB
全文页数:15页
- 资源格式: DOCX
下载积分:8金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
考点解析:北师大版七年级数学下册第一章整式的乘除专题训练试题.docx
北师大版七年级数学下册第一章整式的乘除专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列计算正确的是( )ABCD2、三个数,中,负数的个数是( )A0个B1个C2个D3个3、的值是( )ABCD4、计算的正确结果是()ABCD5、利用乘法公式计算正确的是()ABCD6、下列计算正确的是( )ABCD7、已知,那么的值是( )AB4042C4046D20218、下列运算正确的是( )ABCD9、下列各式中,计算正确的是( )A(3a)2=3a2B-2(a-1)=-2a+1C5a2-a2=4a2D4a2b-2ab2=2ab210、下列计算正确的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若,则_2、计算的结果为_3、若关于x代数式是完全平方式,则常数_4、已知,则_5、22013()2012_三、解答题(5小题,每小题10分,共计50分)1、(1)请写出三个代数式(a+b)2、(ab)2和ab之间数量关系式 (2)应用上一题的关系式,计算:xy3,xy4,试求x+y的值(3)如图,线段AB10,C点是AB上的一点,分别以AC、BC为边长在AB的异侧做正方形ACDE和正方形CBGF,连接AF;若两个正方形的面积S1+S232,求阴影部分ACF面积2、化简:3、计算:4、5、(1)如图1,在边长为a的正方形中剪去一个边长为b的小正方形(ab),把剩下的部分按照图中的线段分割成两个图形请将分割成的这两个图形拼成一个常见的几何图形,要求画出两种不同的图形,并用图1剪拼前后的两个图形验证一个乘法公式 (2)如图2,某小区的花园起初被设计为边长为a米的正方形,后因道路的原因,设计修改为:南边往北平移x(xa)米,而东边往东平移x米,问:修改后的花园面积是多少?在周长为定值4a的长方形中,什么时候其面积最大?并说明理由 -参考答案-一、单选题1、B【分析】由题意直接依据幂的乘方和积的乘方以及同底数幂的乘法逐项进行计算判断即可.【详解】解:A. ,此选项计算错误;B. ,此选项计算正确;C. ,此选项计算错误;D. ,此选项计算错误.故选:B.【点睛】本题考查整式的乘法,熟练掌握幂的乘方和积的乘方以及同底数幂的乘法运算法则是解题的关键.2、B【分析】先计算各数,并与0比较大小,根据比0小的个数得出结论即可【详解】解:0,0,0,负数的个数是1个,故选:B【点睛】本题考查有理数的幂运算,零指数幂,负指数幂,掌握有理数的幂运算,零指数幂,负指数幂,和比较大小是解题关键3、B【分析】根据幂的乘方法则计算即可【详解】解:=,故选B【点睛】本题考查了幂的乘方运算,熟练掌握幂的乘方法则是解答本题的关键幂的乘方底数不变,指数相乘4、A【分析】利用积的乘方的运算法则即可求解【详解】解:,故选:A【点睛】此题主要考查了积的乘方,正确掌握积的乘方的运算法则是解题的关键5、D【分析】根据完全平方公式()、平方差公式()逐项判断即可得【详解】解:A、,此项错误;B、,此项错误;C、,此项错误;D、,此项正确;故选:D【点睛】本题考查了乘法公式,熟记公式是解题关键6、D【分析】根据完全平方公式逐项计算即可【详解】解:A.,故不正确;B.,故不正确;C.,故不正确;D.,正确;故选D【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(a±b)2=a2±2ab+b2是解答本题的关键7、C【分析】设,则得将变形得到,即可求解【详解】解:设,则,故选:C【点睛】本题考查了代数式的求值,解题的关键是利用整体思想结合完全平方公式的变形进行求解8、D【分析】直接利用幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式分别计算得出答案【详解】解:A、,故此选项错误;B、,故此选项错误;C、,故此选项错误;D、,正确;故选:D【点睛】本题主要考查了幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式,正确掌握相关运算法则是解题关键9、C【分析】分别利用合并同类项,去括号法则,积的乘方运算法则分析得出即可【详解】解:A、(3a)2=9a2,故选项错误,不符合题意;B、-2(a-1)= -2a+2,故选项错误,不符合题意;C、5a2-a2=4a2,故选项正确,符合题意;D、4a2b和2ab2不是同类项,所以不能合并,故选项错误,不符合题意故选:C【点睛】此题考查了合并同类项,积的乘方运算,解题的关键是熟练掌握合并同类项,去括号法则,积的乘方运算法则10、B【分析】根据积的乘方、完全平方公式、同类项的合并等知识即可作出判断【详解】解:选项A与D,相加的两项不是同类项,故不能相加,故错误;B选项,根据积的乘方可得正确;D选项,故错误;故选:B【点睛】本题考查了积的乘方、完全平方公式、同类项的合并,掌握它们是关键二、填空题1、3【分析】由题意直接运用完全平方公式进行变形,进而整体代入即可得出答案.【详解】解:.故答案为:3.【点睛】本题考查已知式子求代数式的值和完全平方公式,熟练掌握是解题的关键.2、x+x2 【分析】根据整式的运算法则即可求出答案【详解】解:= = 故答案为:【点睛】本题考查整式的运算,解题的关键熟练运用整式的运算法则3、±1【分析】根据完全平方公式a2±2ab+b2(a±b)2求出m的值【详解】解:x2±4x+4(x±2)2,x2+4mx+4是完全平方式,±4x4mx,m±1故答案为:±1【点睛】本题考查了完全平方式,掌握a2±2ab+b2(a±b)2的熟练应用,两种情况是求m值得关键4、18【分析】由,整理得,即可求出【详解】解:,故答案是:18【点睛】本题考查了完全平方公式,求代数式的值,解题的关键是掌握完全平方公式5、2【分析】把22013化成220122,再逆用积的乘方即可求解【详解】解:22013()2012=220122()2012=2()2012=2故答案为:2【点睛】本题考查了积的乘方,熟练掌握积的乘方的运算法则是解题的关键三、解答题1、(1)(a+b)2(ab)24ab;(2)x+y的值±2;(3)阴影部分ACF面积为17【分析】(1)根据完全平方公式的变形即可求得;(2)根据(1)的关系式,代入数据求值即可;(3)设ACx,BCy,根据图形可得x2+y232,x+y10,根据(1)的关系式即可求得的值,进而求得ACF面积【详解】(1)由完全平方公式(a+b)2a2+2ab+b2,(ab)2a22ab+b2,可得(a+b)2(ab)2(a2+2ab+b2)(a22ab+b2,)4ab,即(a+b)2(ab)24ab,故答案为:(a+b)2(ab)24ab;(2)由(1)题结果可得,(x+y)2(xy)2+4xy16124x+y±±2,x+y的值±2;(3)设ACx,BCy则 x2+y232,x+y10,2xy(x+y)2(x2+y2)102321003268,xy34,阴影部分ACF面积为17【点睛】本题考查了完全平方公式的变形以及完全平方公式与图形面积之间的关系,掌握完全平方公式是解题的关键2、【分析】先利用完全平方公式,多项式乘以多项式计算整式的乘法,再合并同类项即可.【详解】解: 【点睛】本题考查的是整式的乘法运算,完全平方公式的应用,掌握“利用完全平方公式进行简便运算”是解本题的关键.3、【分析】根据多项式除以单项式可直接进行求解【详解】解:原式【点睛】本题主要考查多项式除以单项式,熟练掌握多项式除以单项式是解题的关键4、【分析】根据整式的除法运算顺序和法则计算可得【详解】解:原式;【点睛】本题主要考查整式的除法,解题的关键是掌握整式的除法运算顺序和法则5、(1)见解析;(2)(ax)(ax)a2x2;长宽相等,均为a时,面积最大,理由见解析【分析】(1)可以拼成梯形或拼成长为a+b、宽为ab的长方形,利用不同方法表示同一图形面积来验证平方差公式;(2)修改后2的花园是个长为(a+x)米、宽为(ax)米的长方形,由长方形的面积长×宽;在周长为定值4a的长方形中,当边长为a为正方形时,面积最大【详解】解:(1)拼成的图形如图所示 第一种:(ab)a+(ab)ba2b2 ,即(a+b)(ab)a2b2 第二种:即(a+b)(ab)a2b2 (2)修改后的花园面积是(ax)(ax)a2x2当长宽相等,均为a时,面积最大 理由:设长为x,宽为y,则xy2a 则面积为Sxy(xy)2(xy)2(2a)2(xy)2,显然,当xy时,S取得最大值a2【点睛】此题主要考查乘法公式的应用以及与图形的面积的结合,解题关键是树立数形结合思想,利用平方差公式求解