难点详解北师大版八年级数学下册第六章平行四边形专题训练试卷(无超纲).docx
-
资源ID:32654696
资源大小:1.06MB
全文页数:23页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
难点详解北师大版八年级数学下册第六章平行四边形专题训练试卷(无超纲).docx
北师大版八年级数学下册第六章平行四边形专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、平行四边形OABC在平面直角坐标系中的位置如图所示,AOC45°,OAOC,则点B的坐标为()A(,1)B(1,)C(1,1)D(1,1)2、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是( )A三角形B四边形C五边形D六边形3、如图,正五边形ABCDE点D、E分别在直线m、n上若mn,120°,则2为( )A52°B60°C58°D56°4、如图,在平行四边形中,于点,把以点为中心顺时针旋转一定角度后,得到,已知点在上,连接若,则的大小为( )A140°B155°C145°D135°5、下列图形中,内角和为的多边形是( )ABCD6、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中a的度数是( )A220°B180°C270°D240°7、已知一个正多边形的内角是120°,则这个正多边形的边数是()A3B4C5D68、一个n边形的所有内角之和是900°,则n的值是( )A5B7C9D109、如图,在ABC和ADE中,ABAC,ADAE,且EADBAC80°,若BDC160°,则DCE的度数为()A110°B118°C120°D130°10、已知一个正多边形的一个外角为36°,则这个正多边形的内角和是( )A360°B900°C1440°D1800°第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个正多边形的每个外角都是45°,则这个正多边形是正_边形2、已知一个正多边形内角的度数为108°,则它的边数为_3、如图,在平面直角坐标系中,等边ABC的顶点B、C的坐标分别为(2,0),(6,0),点N从A点出发沿AC向C点运动,连接ON交AB于点M当边AB恰平分线段ON时,则=_4、在平行四边形ABCD中,若A=130°,则B=_,C=_,D=_5、如图,的度数为_三、解答题(5小题,每小题10分,共计50分)1、如图,ABCD是平行四边形,AD4,AB5,点A的坐标为(2,0),求点B、C、D的坐标2、如图,在四边形中,求四边形的面积3、和都是等腰直角三角形, (1)如图,点在线段上,点在线段上,请直接写出线段与线段的数量关系:_;(2)如图,将图中的绕点逆时针旋转,旋转角为(),请判断并证明线段与线段的数量关系;(3)将图中的绕点逆时针旋转,旋转角为(),若,在旋转的过程中,当以,四点为顶点的四边形是平行四边形时,请直接写出旋转角的度数4、如图1,在中,点,分别在边,上,连接,点在线段上,连接交于点(1)比较与的大小,并证明;若,求证:;5、如图,在平行四边形中,E是上一点(1)用尺规完成以下基本操作:在下方作,使得,交于点F(保留作图痕迹,不写作法)(2)在(1)所作的图形中,已知,求的度数-参考答案-一、单选题1、C【分析】作,求得、的长度,即可求解【详解】解:作,如下图:则在平行四边形中,为等腰直角三角形则,解得故选:C【点睛】此题考查了平行四边形的性质,等腰直角三角形的性质以及勾股定理,解题的关键是灵活运用相关性质进行求解2、A【分析】多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形【详解】解:多边形的外角和是360度,又多边形的外角和是内角和的2倍,多边形的内角和是180度,这个多边形是三角形故选:A【点睛】考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理3、D【分析】延长AB交直线n于点F,由正五边形ABCDE,可得出五边形每个内角的度数,再由三角形外角的性质可得,根据平行线的性质可得,最后再利用一次三角形外角的性质即可得【详解】解:如图所示,延长AB交直线n于点F,正五边形ABCDE,故选:D【点睛】题目主要考查正多边形的内角,平行线的性质,三角形外角的性质等,理解题意,作出辅助线,综合运用这几个性质是解题关键4、C【分析】根据题意求出ADF,根据平行四边形的性质求出ABC、BAE,根据旋转变换的性质、结合图形计算即可【详解】解:ADC=70°,CDF=15°,ADF=55°,四边形ABCD是平行四边形,ABC=ADC=70°,ADBC,BFD=125°,AEBC,BAE=20°,由旋转变换的性质可知,BFG=BAE=20°,DFG=DFB+BFG=145°,故选:C【点睛】本题考查的是平行四边形的性质、旋转变换的性质,掌握旋转前、后的图形全等是解题的关键5、C【分析】利用多边形的内角和公式求出多边形的边数,由此即可得出答案【详解】解:设这个多边形的边数是,则,解得,故选:C【点睛】本题考查了多边形的内角和,熟练掌握多边形的内角和是解题关键6、D【分析】如图(见解析),先根据等边三角形的定义可得,再根据四边形的内角和即可得【详解】解:如图,是等边三角形,即,故选:D【点睛】本题考查了多边形的内角和、等边三角形,熟练掌握多边形的内角和是解题关键7、D【分析】设该正多边形为边形,根据多边形的内角和公式,代入求解即可得出结果【详解】解:设该正多边形为边形,由题意得:,解得:,故选:D【点睛】题目主要考查多边形内角和,掌握多边形的内角和公式是解题的关键8、B【分析】根据n边形内角和公式即可得到,由此进行求解即可【详解】解:一个n边形的所有内角之和是900°,故选B【点睛】本题主要考查了多边形内角和公式,解题的关键在于能够熟练掌握多边形内角和公式9、C【分析】先根据四边形的内角和可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质可得,最后根据角的和差即可得【详解】解:在四边形中,即,在和中,故选:C【点睛】本题考查了四边形的内角和、三角形全等的判定定理与性质,正确找出两个全等三角形是解题关键10、C【分析】由正多边形的外角为36°,可求出这个多边形的边数,再根据多边形内角和公式(n2)180°,计算该正多边形的内角和.【详解】解:一个正多边形的外角等于36°,这个多边形的边数为360°÷36°=10,这个多边形的内角和=(102)×180°=1440°,故选:C.【点睛】本题考查多边形的外角和、内角和,理解和掌握多边形的外角和、内角和的计算方法是解决问题的关键.二、填空题1、八【分析】根据多边形的外角和等于即可得【详解】解:因为多边形的外角和等于,所以这个正多边形的边数是,即这个正多边形是正八边形,故答案为:八【点睛】本题考查了多边形的外角和,熟记多边形的外角和等于是解题关键2、5【分析】根据相邻的内角与外角互为邻补角求出每一个外角的度数为72°,再用外角和360°除以72°,计算即可得解【详解】解:正多边形的每个内角等于108°,每一个外角的度数为180°108°72°,边数360°÷72°5,这个正多边形是正五边形故答案为:5【点睛】本题主要考查了正多边形的外角和,熟记多边形外角和为360度是解题的关键3、【分析】过点作交于点,可得为的中位线,为的中位线,利用三角形中位线定理和等边三角形的性质得到:,即可求解【详解】解:过点作交于点,如下图:B、C的坐标分别为(2,0),(6,0),边AB恰平分线段ON点是的中点,是的中位线,又为等边三角形,故答案为【点睛】本题考查了三角形中位线定理,等边三角形的性质以及坐标与图形的性质,解题的关键是正确作出辅助线,构造出三角形的中位线4、 【分析】利用平行四边形的性质:邻角互补,对角相等,即可求得答案【详解】解:在平行四边形ABCD中,、是的邻角,是的对角, 故答案为: ,【点睛】本题主要是考查了平行四边形的性质:对角相等,邻角互补,熟练掌握平行四边形的性质,求解决本题的关键5、【分析】根据三角形外角的性质和四边形内角和等于360°可得A+B+C+D+E+F的度数【详解】解:如图,1=D+F,2=A+E,1+2+B+C=360°,A+B+C+D+E+F=360°故答案为:【点睛】本题考查了四边形的内角和,三角形的外角的性质,掌握三角形外角的性质是解题的关键三、解答题1、【分析】根据,即可求得点,勾股定理求得即可求得点,再根据平行四边形的性质可得点坐标【详解】解:ABCD是平行四边形,轴,由题意可得,即,轴,、【点睛】此题考查了坐标与图形,涉及了勾股定理、平行四边形的性质,解题的关键是掌握并灵活运用相关性质进行求解2、18【分析】延长CB至点E,使得BE=DC,然后由题意易证ADCABE,则有DAC=BAE,AC=AE,进而可得CAE=90°,最后问题可求解【详解】解:延长CB至点E,使得BE=DC,如图所示:,ADCABE,DAC=BAE,AC=AE,即,ACE是等腰直角三角形,【点睛】本题主要考查全等三角形的性质与判定、等腰直角三角形的判定及多边形内角和,熟练掌握全等三角形的性质与判定、等腰直角三角形的判定及多边形内角和是解题的关键3、(1);(2),证明见详解;(3)角的度数是45°或225°或315°【分析】(1)根据等腰直角三角形的性质可得,再根据等量关系可得线段BE与线段CD的关系;(2)根据等腰直角三角形的性质可得,根据旋转的性质可得,根据全等三角形的判定定理可证,根据全等三角形的性质即可求解;(3)根据平行四边形的性质可得,再根据等腰直角三角形的性质即可求解【详解】解:(1)和都是等腰直角三角形,故答案为:;(2)ABC和AED都是等腰直角三角形,由旋转的性质得,在与中,;(3)如图,以A、B、C、D四点为顶点的四边形是平行四边形,和都是等腰直角三角形,当C点旋转于位置时,当C点旋转于位置时,当C点旋转于位置时,角的度数是45°或225°或315°,故答案为:45°或225°或315【点睛】题目主要考查等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,平行四边形的判定和性质,理解题意,作出相应辅助线,综合运用这些性质是解题关键4、(1)CAE=CBD,理由见解析;证明见解析;(2)AE=2CF仍然成立,理由见解析【分析】(1)只需要证明CAECBD即可得到CAE=CBD;先证明CAH=BCF,然后推出BDC=FCD,CAE=CBD=BCF,得到CF=DF,CF=BF,则BD=2CF,再由CAECBD,即可得到AE=2BD=2CF;(2)如图所示延长DC到G使得,DC=CG,连接BG,只需要证明ACEBCG得到AE=BG,再由CF是BDG的中位线,得到BG=2CF,即可证明AE=2CF【详解】解:(1)CAE=CBD,理由如下:在CAE和 CBD中,CAECBD(SAS),CAE=CBD;CFAE,AHC=ACB=90°,CAH+ACH=ACH+BCF=90°,CAH=BCF,DCF+BCF=90°,CDB+CBD=90°,CAE=CBD,BDC=FCD,CAE=CBD=BCF,CF=DF,CF=BF,BD=2CF,又CAECBD,AE=2BD=2CF;(2)AE=2CF仍然成立,理由如下:如图所示延长DC到G使得,DC=CG,连接BG,由旋转的性质可得,DCE=ACB=90°,ACD+BCD=BCE+BCD,ECG=90°,ACD=BCE,ACD+DCE=BCE+ECG,即ACE=BCG,又CE=CD=CG,AC=BC,ACEBCG(SAS),AE=BG,F是BD的中点,CD=CG,CF是BDG的中位线,BG=2CF,AE=2CF【点睛】本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,旋转的性质,三角形中位线定理,熟知全等三角形的性质与判定条件是解题的关键5、(1)见解析;(2)【分析】(1)延长,在射线上截取两点,使得,作的垂线,交于点,在上截取,作的中垂线,交于点,则即为所求;(2)根据三角形的外角性质以及平行线的性质即可求得的度数【详解】(1)如图所示,根据作图可知,四边形是平行四边形,四边形是平行四边形则即为所求;(2),由(1)可知【点睛】本题考查了尺规作图-作垂线,平行四边形的性质,三角形的外角性质,平行线的性质,掌握基本作图是解题的关键