难点解析京改版八年级数学下册第十七章方差与频数分布定向测评试卷(精选).docx
-
资源ID:32656116
资源大小:477.18KB
全文页数:20页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
难点解析京改版八年级数学下册第十七章方差与频数分布定向测评试卷(精选).docx
京改版八年级数学下册第十七章方差与频数分布定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知数据,的平均数,方差,则数据,的平均数和方差分别为( )A5,12B5,6C10,12D10,62、了解时事新闻,关心国家重大事件是每个中学生应具备的素养,在学校举行的新闻事件比赛中,知道“祝融号”成功到达火星的同学有40人,频率为0.8,则参加比赛的同学共有()A32人B40人C48人D50人3、甲、乙、丙、丁四个旅游团的游客人数都相等,且每个旅游团游客的平均年龄都是35岁,这四个旅游团游客年龄的方差分别,这四个旅游团中年龄相近的旅游团是( )A甲团B乙团C丙团D丁团4、已知一组数据8,6,10,10,13,11,8,10,12,12,9,8,7,12,9,11,9,10,11,10那么频率是0.2的一组数据的范围是( )ABCD5、某校随机抽查了10名学生的体育成绩,得到的结果如表:成绩(分)4647484950人数(人)12322下列说法正确的是( )A这10名同学的体育成绩的方差为50B这10名同学的体育成绩的众数为50分C这10名同学的体育成绩的中位数为48分D这10名同学的体育成绩的平均数为48分6、已知一组数据1,2,0,1,2,那么这组数据的方差是()A10B4C2D0.27、对于一列数据(数据个数不少于6),如果去掉一个最大值和一个最小值,那么这列数据分析一定不受影响的是()A平均数B中位数C众数D方差8、一个有80个样本的数据组中,样本的最大值是145,最小值是50,取组距为10,那么可以分成( )组A10B9C8D79、甲、乙两人各射击5次,成绩如表根据数据分析,在两人的这5次成绩中()成绩(单位:环)甲378810乙778910A甲的平均数大于乙的平均数B甲的中位数小于乙的中位数C甲的众数大于乙的众数D甲的方差小于乙的方差10、已知数据1,2,3,3,4,5,则下列关于这组数据的说法错误的是()A平均数、中位数和众数都是3B极差为4C方差是D标准差是第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在数3141592653中,偶数出现的频率是_2、一组数据1、2、3、4的极差是_3、一组数据5,8,x,10,4的平均数为2x,则x_,这组数据的方差为_4、一组数据0,1,3,2,4的平均数是_,这组数据的方差是_5、甲、乙两名篮球运动员进行每组10次的投篮训练,5组投篮结束后,两人的平均命中数都是7次,方差分别是,则在本次训练中,运动员_的成绩更稳定三、解答题(5小题,每小题10分,共计50分)1、甲、乙两名队员参加射击训练,将10次成绩分别制成如图所示的两个统计图:(1)根据以上信息,整理分析数据如表:平均成绩(环)众数(环)中位数方差甲7a7c乙78b4.2填空:a ,b ,c ;(2)根据以上数据分析,请你运用所学统计知识,任选两个角度评价甲、乙两名队员哪位队员的射击成绩更好2、甲、乙两名队员参加射击训练,每人射击10次,成绩分别如下:平均成绩中位数众数方差甲a771.2乙7b8c根据以上信息,整理分析数据如下:(1)填空:a ;b ;c ;(2)从平均数和中位数的角度来比较,成绩较好的是 ;(填“甲”或“乙”)(3)若需从甲、乙两名队员中选择一人参加比赛,你认为选谁更加合适?请说明理由3、某县教育局组织了一次经典诵读比赛,中学组有两队各10人的比赛成绩如下表:甲789710109101010乙10879810109109(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;(2)计算乙队的平均成绩;(3)如果要从两个队中选择一对参加市级比赛,你认为安排哪个队更容易获奖4、贵州省教育厅下发了在全省中小学幼儿园广泛开展节约教育的通知,通知中要求各学校全面持续开展“光盘行动”铜仁市教育局督导检查组为了调查学生对“节约教育”内容的了解程度(程度分为:“A了解很多”,“B了解较多”,“C了解较少”,“D不了解”),对本市一所中学的学生进行了抽样调查,我们将这次调查的结果绘制了以下两幅统计图根据以上信息,解答下列问题:(1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该中学共有1900名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?5、某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查 名学生;(2)补全条形统计图;(3)若该校共有1500名学生,估计爱好运动的学生有多少人?-参考答案-一、单选题1、C【分析】将所求数据的平均值和方差按照相关公式列出,找出与已知数据平均数和方差的关系,代入计算即可【详解】解:数据,的平均数即:数据,的平均数为又数据,的方差即:数据,的方差为故选:C【点睛】本题考查平均数和方查的计算,根据题意找出两组数据的联系是解题的关键2、D【分析】根据频率=频数总数,求解即可【详解】解:根据频率=频数总数,即总数=频数频率,则参加比赛的同学共有40÷0.8=50(人),故选:D【点睛】本题考查了频数与频率,记住公式:频率=频数总数是解题的关键3、B【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定【详解】S=6,S=1.8,S=5,S=8,1.8<5<6<8S最小,这四个旅游团中年龄相近的旅游团是:乙团故选:B【点睛】本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定4、D【分析】首先知共有20个数据,根据公式:频数=频率×总数,知要使其频率为0.2,其频数应为4,然后观察选项中哪组数据包含样本中的数据有4个即可求解【详解】解:这组数据共20个,要使其频率为0.2,则频数为:20×0.2=4个,选项A中包含的数据有:6和7,其频数为2;选项B中包含的数据有:8,8,8,9,9,9,其频数为6;选项C中包含的数据有:10,10,10,10,10,11,11,11,其频数为8;选项D中包含的数据有:12,12,12,13,其频数为4,故选:D【点睛】本题考查了频数与频率的概率,掌握公式“频数=频率×总数”是解决本题的关键5、C【分析】根据众数、中位数、平均数及方差的定义列式计算即可【详解】这组数据的平均数为×(46+47×2+48×3+49×2+50×2)48.2,故D选项错误,这组数据的方差为×(4648.2)2+2×(4748.2)2+3×(4848.2)2+2×(4948.2)2+2×(5048.2)21.56,故A选项错误,这组数据中,48出现的次数最多,这组数据的众数是48,故B选项错误,这组数据中间的两个数据为48、48,这组数据的中位数为48,故C选项正确,故选:C【点睛】本题考查众数、中位数、平均数及方差,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数;一组数据中,出现次数最多的数就叫这组数据的众数;熟练掌握定义及公式是解题关键6、C【分析】根据方差公式进行计算即可方差:一般地,各数据与平均数的差的平方的平均数叫做这组数据的方差【详解】1,2,0,1,2,这组数据的平均数为故选C【点睛】本题考查了求一组数据的方差,掌握方差的计算公式是解题的关键7、B【分析】根据中位数不受极端值的影响即可得【详解】解:由题得,去掉了一组数据的极端值,中位数不受极端值的影响,故选B【点睛】本题考查了一组数的特征数据,解题的关键是掌握平均数,中位数,众数,方差8、A【分析】求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数【详解】解:145-50=95,95÷10=9.5,所以应该分成10组故选A【点睛】本题考查频率分布表中组数的确定,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数9、C【分析】根据题意求出众数,中位数,平均数和方差,然后进行判断即可【详解】解:A、甲的成绩的平均数(3+7+8+8+10)7.2(环),乙的成绩的平均数(7+7+8+9+10)8.2(环),所以A选项说法错误,不符合题意;B、甲的成绩的中位数为8环乙的成绩的中位数为8环,所以B选项说法错误,不符合题意;C、甲的成绩的众数为8环,乙的成绩的众数为7环;所以C选项说法正确,符合题意;D、,所以D选项说法错误,不符合题意故选C【点睛】本题主要考查了平均数,众数,中位数和方差,解题的关键在于能够熟练掌握相关知识进行求解10、D【分析】分别求出这组数据的平均数、众数、中位数、极差、方差、标准差,再进行判断【详解】解:这组数据的平均数为:(1+2+3+3+4+5)÷63,出现次数最多的是3,排序后处在第3、4位的数都是3,因此众数和中位数都是3,因此选项A不符合题意;极差为514,B选项不符合题意;S2×(13)2+(23)2+(33)2+(33)2+(43)2+(53)2,C选项不符合题意;S,因此D选项符合题意,故选:D【点睛】考查平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解答的前提二、填空题1、30%【分析】在数3141592653中共出现了3个偶数,由频率的计算公式即可求得频率【详解】由题意知,10个数字中出现了3个偶数,则偶数出现的频率为:故答案为:30%【点睛】本题考查了频率的计算,根据频率的计算公式,知道总的次数及事件出现的次数即可求得频率2、5【分析】极差是最大值减去最小值,即即可【详解】解:故答案是:5【点睛】本题考查了极差,极差反映了一组数据变化范围的大小,解题的关键是掌握求极差的方法是用一组数据中的最大值减去最小值注意:极差的单位与原数据单位一致如果数据的平均数、中位数、极差都完全相同,此时用极差来反映数据的离散程度就显得不准确3、3 6.8 【分析】本题可用求平均数的公式解出x的值,在运用方差的公式解出方差【详解】解:数据5,8,x,10,4的平均数是2x,58x1045×2x,解得x3,2×36,s2 (56)2(86)2(36)2(106)2(46)2×(149164)6.8故答案为3,6.8【点睛】本题考查了算术平均数、方差的计算方法,熟练掌握该知识点是本题解题的关键4、2 2 【分析】依据平均数的定义:,计算即可得;再根据方差的定义: 列式计算可得【详解】解:这组数据的平均数,方差,故答案为:2,2【点睛】本题主要考查了平均数,方差的计算,熟悉相关性质是解题的关键5、乙【分析】先根据乙的方差比甲的方差小,再根据方差越大,波动就越大,数据越不稳定,方差越小,波动越小,数据越稳定即可得出答案【详解】解:,乙运动员的成绩更稳定;故答案为:乙【点睛】本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定三、解答题1、(1),;(2)答案见解析.【分析】(1)分别根据平均数,方差,中位数的定义求解即可;(2)从众数与中位数的角度分析,乙的射击成绩都比甲要高,从而可得结论.【详解】解:(1)由频数直方图可得:甲的成绩如下: 其中环出现了4次,所以众数是环,环 由折线统计图可得:按从小到大排序为: 所以中位数为:.故答案为:,;(2)从众数与中位数来看,乙的众数与中位数都比甲高,所以乙的射击成绩比甲的射击成绩要好一些.【点睛】本题考查的是平均数,众数,中位数,方差的含义,根据平均数,众数,中位数,方差下结论,掌握以上基础概念是解本题的关键.2、(1)7;7.5;4.2;(2)乙;(3)选择乙参加比赛,理由见解析【分析】(1)根据平均数公式计算甲,利用中位数先把以成绩从低到高排序,取中间两个成绩7、8的平均数,利用方差公式求c即可;(2)根据平均数两者均为7,乙的中位数7.5大于甲的中位数7,说明乙的成绩好于甲,(3)甲乙平均数相同,乙的中位数7.5大于甲的中位数7,说明乙的成绩好于甲,从方差看乙的方差大于甲,只说明乙的成绩没有甲稳定,从折线图看,乙开始时发挥不好,后来乙的成绩呈上升趋势,乙队员要比甲队员参赛好【详解】解:(1)甲的平均成绩为乙的成绩从低到高排列为:3,4,6,7,7,8,8,8,9,10,所以中位数=4.2故答案为:7,7.5,4.2.(2)由表中数据可知,甲、乙平均成绩相等,乙的中位数7.5大于甲的中位数7,说明乙的成绩好于甲,故答案为:乙;(3)选择乙参加比赛,理由:从平均数上看,甲、乙平均成绩相等,总分相等,从中位数上看乙的中位数和众数都大于甲,说明乙的成绩好于甲,从方差上看乙的方差大于甲只说明乙的成绩没有甲稳定,从众数看乙的众数是8,甲的众数是7,说明乙成绩要好些,从折线图看,乙开始时发挥不好,后来乙的成绩呈上升趋势,故应选乙队员参赛【点睛】本题考查条形统计数,折线统计图,统计表获取信息以及处理信息,中位数,平均数,方差,利用集中趋势的量与离散程度的量进行决策是解题关键3、(1)9.5,10;(2)9;(3)甲,乙的平均分均为9分,但是甲的方差为1.4,乙的方差为1,所以乙队的成绩更加稳定,选择乙【分析】(1)先将甲队的成绩按从小到大的顺序排列,可得位于第5位和第6位的分别为9和10 ,可得甲队成绩的中位数是9.5分,再由乙队成绩中10出现的次数最多,可得乙队成绩的众数是10分;(2)利用乙队成绩的总和除以10,即可求解;(3)分别两队的平均成绩和方差,即可求解【详解】解:(1)将甲队的成绩按从小到大的顺序排列为:7、7、8、9、9、10、10、10、10、10,位于第5位和第6位的分别为9和10 ,甲队成绩的中位数是 分,乙队成绩中10出现了4次,出现的次数最多,乙队成绩的众数是10分;(2)乙队的平均成绩为 分;(3)甲队的平均成绩为 分,甲队成绩的方差为乙队成绩的方差为,甲,乙的平均分均为9分,但是甲的方差为1.4,乙的方差为1,乙队的成绩更加稳定,选择乙【点睛】本题主要考查了求一组数据的中位数,众数,平均数,利用方差做决策,熟练掌握一组数据中位于正中间的一个数或两个数的平均数是中位数;出现次数最多的数是众数;平均数等于数据的总和除以个数;方差越小,越稳定是解题的关键4、 (1) 120(名);(2) 补全统计图见详解(3)855(名)【分析】(1)结合扇形统计图D组百分比5%和条形统计图D组人数6名用除法求出全部学生数即可;(2) 利用(1)中的数据计算出C组的人数,在计算出A和B的百分比即可;(3)根据用样本B组的百分比为45%,估计总体中含有的数量,利用B组的百分比×总人数计算出人数即可【详解】解:(1)抽样调查的学生人数为6÷5%=120(名);(2)A的百分比:×100%=30%,B的百分比:×100%=45%,C组的人数:120×20%=24名; 补全统计图,如图所示:(3)对“节约教育”内容“了解较多”的有1900×45%=855(名)【点睛】本题考查的是条形统计图和扇形统计图的信息获取与处理,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小,用样本的百分比含量估计总体中的数量5、(1)100;(2)见解析;(3)600【分析】(1)根据爱好运动人数的百分比,以及运动人数即可求出共调查的人数;(2)根据两幅统计图即可求出阅读的人数以及上网的人数,从而可补全图形;(3)利用样本估计总体即可估计爱好运动的学生人数【详解】解:(1)爱好运动的人数为,所占百分比为共调查人数为:,故答案为:;爱好上网的人数所占百分比为爱好上网人数为:,爱好阅读人数为:,补全条形统计图,如图所示,(3)爱好运动的学生人数所占的百分比为,估计爱好运用的学生人数为:,故答案为:;【点睛】本题考查统计的基本知识,样本估计总体,解题的关键是正确利用两幅统计图的信息