难点详解京改版九年级数学下册第二十三章-图形的变换定向测评试题(精选).docx
-
资源ID:32656886
资源大小:956.52KB
全文页数:26页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
难点详解京改版九年级数学下册第二十三章-图形的变换定向测评试题(精选).docx
九年级数学下册第二十三章 图形的变换定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列四个标志中,是轴对称图形的是( )ABCD2、平面直角坐标系中,点P(,)和点Q(,)关于轴对称,则的值是( )ABCD3、下列图形中,是中心对称图形的是( )ABCD4、如图,ABC中,ABAC2,B30°,ABC绕点A逆时针旋转(0120°)得到AB'C',B'C'与BC、AC分别交于点D、点E,设CD+DEx,AEC'的面积为y,则y与x的函数图象大致为()ABCD5、下面是四家医院标志的图案部分,其中是轴对称图形的是()ABCD6、如图,在RtABC中,ABC90°,AB6,BC8把ABC绕点A逆时针方向旋转到AB'C',点B'恰好落在AC边上,则CC'()A10B2C2D47、如图,把含30°的直角三角板ABC绕点B顺时针旋转至如图EBD,使BC在BE上,延长AC交DE于F,若AF8,则AB的长为()A4B4C4D68、如图,在中,点为边上一点,将沿直线翻折得到,与边交于点E,若,点为中点,则的长为( )AB6CD9、在平面直角坐标系中,将点(3,-4)平移到点(-1,4),经过的平移变换为( )A先向左平移4个单位长度,再向上平移4个单位长度B先向左平移4个单位长度,再向上平移8个单位长度C先向右平移4个单位长度,再向下平移4个单位长度D先向右平移4个单位长度,再向下平移8个单位长度10、在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是 ( )A( - 1, - 3)B( - 1,3)C(1, - 3)D(3,1)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点与点关于x轴对称,则的值为_2、如图,直线AB与x轴交于点,与x轴夹角为30°,将沿直线AB翻折,点O的对应点C恰好落在双曲线上,则k的值为_3、若一次函数ykx+8(k0)的图象与x轴、y轴分别交于A、B两点,当k的取值变化时,点A随之在x轴上运动,将线段AB绕点B逆时针旋转90°得到BQ,连接OQ,则OQ长的最小值是 _4、在平面直角坐标系中,点与点B关于y轴对称,则点B的坐标是_5、若点(1,m)与点(n,2)关于y轴对称,则的值为_三、解答题(5小题,每小题10分,共计50分)1、问题背景如图(1),ABC为等腰直角三角形,BAC90°,直线l绕着点A顺时针旋转,过B,C两点分别向直线l作垂线BD,CE,垂足为D,E,此时ABD可以由CAE通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小(取最小旋转角度)尝试应用如图(2),ABC为等边三角形,直线l绕着点A顺时针旋转,D、E为直线l上两点,BDAAEC60°ABD可以由CAE通过旋转变换得到吗?若可以,请指出旋转中心O的位置并说明理由;拓展创新如图(3)在问题背景的条件下,若AB2,连接DC,直接写出CD的长的取值范围2、如图,在正方形网格中,每一个小正方形的边长都为1,ABC的顶点分别为A(2,3),B(2,1),C(5,4)(1)只用直尺在图中找出ABC的外心P,并写出P点的坐标_(2)以(1)中的外心P为位似中心,按位似比2:1在位似中心的左侧将ABC放大为ABC,放大后点A、B、C的对应点分别为A、B、C,请在图中画出ABC;(3)若以A为圆心,为半径的A与线段BC有公共点, 则的取值范围是_3、如图(1)将ABD平移,使点D沿BD延长线移至点C得到,交AC于点E,AD平分BAC(1)猜想EC与之间的关系,并说明理由(2)如图将ABD平移至如图(2)所示,得到,请问:平分吗?为什么?4、如图,在等腰中,点D在线段BC的延长线上,连接AD ,将线段AD绕点A逆时针旋转90°得到线段AE,连接CE,射线BA与CE相交于点F(1)依题意补全图形;(2)用等式表示线段BD 与CE的数量关系,并证明;(3)若F为CE中点,则CE的长为_5、如图,点O,B的坐标分别是(0,0),(3,0)将OAB绕点O逆时针旋转90°,得到OA1B1(1)画出平面直角坐标系和三角形OA1B1;(2)求旋转过程中点B走过的路径的长-参考答案-一、单选题1、D【分析】利用轴对称图形的定义进行解答即可【详解】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不符合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意;故选:D【点睛】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形2、A【分析】根据题意直接利用关于x轴对称点的性质得出a,b的值,进而代入计即可得出答案【详解】解:点P(,)和点Q(,)关于轴对称,故选:A.【点睛】本题考查关于x轴的对称点的坐标特点,注意掌握关于x轴的对称点的坐标特点为横坐标不变,纵坐标互为相反数.3、D【详解】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项不符合题意;D、是中心对称图形,故本选项符合题意;故选:D【点睛】本题主要考查了中心对称图形的定义,熟练掌握在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键4、B【分析】先证ABFACE(ASA),再证BFDCED(AAS),得出DE+DC=DE+DB=BE=x,利用锐角三角函数求出,AG=ACsin30°=1,根据三角形面积列出函数解析式是一次函数,即可得出结论【详解】解:设BC与AB交于F,ABC绕点A逆时针旋转(0120°)得到AB'C',BAF=CAE=,AB=AC=AB=AC,B=C=B=C=30°,在ABF和ACE中,ABFACE(ASA),AF=AE,AB=AC,BF=AB-AF=AC-AE=CE,在BFD和CED中,BFDCED(AAS),BD=CD,FD=ED,DE+DC=DE+DB=BE=x,过点A作AGBC于G,AB=AC,BG=CG,AC=2,cosC=,AG=ACsin30°=1EC=是一次函数,当x=0时,故选择B【点睛】本题考查等腰三角形性质,图形旋转,三角形全等判定与性质,解直角三角形,三角形面积,列一次函数解析式,识别函数图像,本题综合性强,难度大,掌握以上知识是解题关键5、A【分析】根据轴对称图形的概念逐项判断解答即可【详解】是轴对称图形,选项正确;不是轴对称图形,选项错误;不是轴对称图形,选项错误;不是轴对称图形,选项错误;故选:【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后能重合6、D【分析】首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB',BC= B'C',从而求出B'C,即可在RtB'C'C中利用勾股定理求解【详解】解:在RtABC中,AB6,BC8,由旋转性质可知,AB= AB'=6,BC= B'C'=8,B'C=10-6=4,在RtB'C'C中,故选:D【点睛】本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键7、C【分析】根据旋转的性质得到ABBE,AE30°,设BCx,根据直角三角形的性质得到ABDE2x,根据勾股定理得到AC,根据题意列方程即可得到结论【详解】解:把含30°的直角三角板ABC绕点B顺时针旋转得到EBD,ABBE,AE30°,ACB90°,EDF90°,设BCx,ABBE2x,CEx,AC,ECF90°,E30°,CFEF,CEx,CF,AF8,xAB2x,故选:C【点睛】本题考查了旋转的性质,含30°角的直角三角形的性质,勾股定理,熟练掌握旋转的性质是解题的关键8、A【分析】由折叠的性质可得,然后证明,得到,设,即可推出,从而得到,则,从而得到,再由,求解即可【详解】解:由折叠的性质可得,AB=AC,B=C,又,E是CD的中点,DE=CE,设,解得,故选A【点睛】本题主要考查了等腰三角形的性质,相似三角形的性质与判定,折叠的性质,解题的关键在于能够熟练掌握相似三角形的性质与判定条件9、B【分析】利用平移中点的变化规律求解即可【详解】解:在平面直角坐标系中,点(3,-4)的坐标变为(-1,4),点的横坐标减少4,纵坐标增加8,先向左平移4个单位长度,再向上平移8个单位长度故选:B【点睛】本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度10、A【分析】由两个点关于原点对称时,它们的坐标符号相反特点进行求解即可【详解】解:两个点关于原点对称时,它们的坐标符号相反,点关于原点对称的点的坐标是故选:A【点睛】题目考查了关于原点对称的点的坐标,解题关键是掌握好关于原点对称点的坐标规律二、填空题1、5【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得a与b的值,再代入计算即可【详解】解:点与点关于x轴对称,则,故答案为【点睛】此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律2、【分析】如图,过点C作CDx轴于D,根据折叠性质可得CAB=BAO=30°,AC=OA=2,可得ACD=30°,根据含30°角的直角三角形的性质可得AD的长,利用勾股定理可得出CD的长,即可得出点C坐标,代入即可得答案【详解】A(,0),OA=2,将沿直线AB翻折,点O的对应点C恰好落在双曲线上,BAO=30°,CAB=BAO=30°,AC=OA=2,CAO=60°,ACD=30°,AD=AC=1,OD=OA=1,CD=,点C在第二象限,点C坐标为(,),点C在在双曲线上,故答案为:【点睛】本题考查折叠性质、含30°角的直角三角形的性质、勾股定理及反比例函数图象上的点的坐标特征,30°角所对的直角边等于斜边的一半;图形折叠前后对应边相等,对应角相等;正确得出点C坐标是解题关键3、8【分析】根据一次函数解析式可得:,过点B作轴,过点A作,过点Q作,由旋转的性质可得,依据全等三角形的判定定理及性质可得:MABNBQ,即可确定点Q的坐标,然后利用勾股定理得出OQ的长度,最后考虑在什么情况下取得最小值即可【详解】解:函数得:,过点B作轴,过点A作,过点Q作,连接OQ,如图所示:将线段BA绕点B逆时针旋转得到线段BQ,在MAB与NBQ中,MABNBQ,点Q的坐标为,当或时,取得最小值为8,故答案为:8【点睛】题目主要考查一次函数与几何的综合问题,包括与坐标轴的交点,旋转,全等三角形的判定和性质,勾股定理等,理解题意,作出相应图形是解题关键4、(2,4)【分析】根据点(x,y)关于y轴对称的点的坐标为(x, y)进行解答即可【详解】解:点A(2,4)关于y轴对称的点B的坐标是(2,4),故答案为:(2,4)【点睛】本题考查关于y轴对称的点的坐标,熟知关于y轴对称的点的坐标变换规律是解答的关键5、3【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出m、n的值,然后相加计算即可得解【详解】解:点(1,m)与点(n,2)关于y轴对称,;故答案为:3【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数三、解答题1、(1)旋转中心为BC边的中点O,旋转方向为逆时针,旋转角度为90°;(2)可以,旋转中心为为等边ABC三边垂直平分线的交点O,理由见解析;(3)【分析】问题背景(1)根据等腰直角三角形的性质,以及旋转的性质确定即可;尝试应用(2)首先通过证明ABD和CAE全等说明点A和点B对应,点C和点A对应,从而作AB和AC的垂直平分线,其交点即为旋转中点;拓展创新(3)首先确定出D点的运动轨迹,然后结合点与圆的位置关系,分别讨论出CD最长和最短时的情况,并结合勾股定理进行求解即可【详解】解:问题背景(1)如图所示,作AOBC,交BC于点O,由等腰直角三角形的性质可知:AOC=90°,OA=OC,点A是由点C绕点O逆时针旋转90°得到,同理可得,点B是由点A绕点O逆时针旋转90°得到,点D是由点E绕点O逆时针旋转90°得到,ABD可以由CAE通过旋转变换得到,旋转中心为BC边的中点O,旋转方向为逆时针,旋转角度为90°;尝试应用(2)ABC为等边三角形,AB=AC,BAC=60°,DAC=DAB+BAC=AEC+EAC,BAC=AEC=60°,DAB=ECA,在ABD和CAE中,ABDCAE(AAS),ABD的A、B、D三点的对应点分别为CAE的C、A、E三点,则AC、AB分别视作两组对应点的连线,此时,如图所示,作AC和AB的垂直平分线交于点O,ABC为等边三角形,由等边三角形的性质可知,OC=OA=OB,AOC=120°,ABD可以由CAE通过旋转变换得到,旋转中心为为等边ABC三边垂直平分线的交点O;拓展创新(3)由(1)知,在直线l旋转的过程中,总有ADB=90°,点D的运动轨迹为以AB为直径的圆,如图,取AB的中点P,连接CP,交P于点Q,则当点D在CP的延长线时,CD的长度最大,当点D与Q点重合时,CD的长度最小,即CQ的长度,AB=AC,AB=2,AP=1,AC=2,在RtAPC中,由圆的性质,PD=AP=1,PD=PQ=1,CD的长的取值范围为:【点睛】本题主要考查旋转三要素的确定,以及旋转的性质,主要涉及等腰直角三角形和等边三角形的性质,全等三角形的判定与性质,以及动点最值问题,掌握旋转的性质,确定出动点的轨迹,熟练运用圆的相关知识点是解题关键2、(1)(4,2);(2)见解析;(3)【分析】(1)根据三角形的外接圆的圆心是三边垂直平分线的交点即可找到点P;(2)根据位似中心与三角形三个顶点的连线将原三角形扩大2倍即可;(3)根据直线和圆的位置关系:当半径大于或等于点A到BC的距离时,A与线段BC有一个或两个公共点即可【详解】解:如图所示:(1)点P即为ABC的外心,P点的坐标为(4,2),故答案为:(4,2);(2)图中画出的ABC即为所求作的图形;(3)观察图形可知:r=时,A与线段BC有一个公共点此时A与线段BC相切,当时,A只经过点,的取值范围是故答案为:【点睛】本题考查了作图位似变换、三角形的外接圆与圆心、直线与圆的位置关系,解决本题的关键是根据位似中心画位似图形3、(1),见解析;(2)平分,见解析【分析】(1)由题意根据平移的性质得出BAD=DAC,BAD=A,ABAB,进而得出BAC=BEC,进而得出答案;(2)根据题意利用平移的性质得出BAD=BAD,ABAB,进而得出BAD=BAC,即可得出BAD=BAC【详解】解:(1)BEC=2A,理由:将ABD平移,使点D沿BD延长线移至点C得到ABD,AB交AC于点E,AD平分BAC,BAD=DAC,BAD=A,ABAB,BAC=BEC,BAD=A=BAC=BEC,即BEC=2A.(2)AD平分BAC,理由:将ABD平移后得到ABD,BAD=BAD,ABAB,BAC=BAC.BAD=BAC, BAD=BAC,AD平分BAC.【点睛】本题主要考查平移的性质,熟练掌握并根据平移的性质得出对应角、对应边之间的关系是解题的关键4、(1)见解析;(2),见解析;(3)4【分析】(1)根据题意补全图形即可;(2)根据题意易得,即可推出即可利用“SAS”证明,得出结论(3)由结合题意可推出,即证明ACF是等腰直角三角形,从而得出,再由勾股定理可求出CF的长,最后根据点F为CE中点,即可求出CE的长【详解】解:(1)依题意补全图形如下: (2)用等式表示线段BD与CE的数量关系是:,证明: 根据题意可知ABC是等腰直角三角形,AD绕点A逆时针旋转90°得到AE, ,即,在和中,(3),ABC是等腰直角三角形,ACF是等腰直角三角形,在中,点F为CE中点,【点睛】本题考查等腰直角三角形的判定和性质,旋转的性质,三角形全等的判定和性质以及勾股定理利用数形结合的思想是解答本题的关键5、(1)见解析;(2)【分析】(1)根据点O的坐标确定直角坐标系,根据旋转的性质确定点A1、B1,顺次连线即可得到OA1B1;(2)利用弧长公式计算即可【详解】解:(1)如图,OA1B1即为所求三角形;(2)旋转过程中点B走过的路径的长=【点睛】此题考查了旋转作图,弧长的计算公式,正确掌握旋转的性质及弧长的计算公式是解题的关键