欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    难点解析沪科版九年级数学下册第24章圆章节练习试题(含答案及详细解析).docx

    • 资源ID:32656936       资源大小:960.21KB        全文页数:31页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    难点解析沪科版九年级数学下册第24章圆章节练习试题(含答案及详细解析).docx

    沪科版九年级数学下册第24章圆章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB,BC,CD分别与O相切于E、F、G三点,且ABCD,BO3,CO4,则OF的长为()A5BCD2、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD3、下列判断正确的个数有( )直径是圆中最大的弦;长度相等的两条弧一定是等弧;半径相等的两个圆是等圆;弧分优弧和劣弧;同一条弦所对的两条弧一定是等弧A1个B2个C3个D4个4、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是( )A2个B3个C4个D5个5、已知O的半径为4,则点A在( )AO内BO上CO外D无法确定6、如图,在RtABC中,ACB90°,A30°,BC2将ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到EDC,斜边DE交AC边于点F,则图中阴影部分的面积为( )A3B1CD7、下列图形中,是中心对称图形,但不是轴对称图形的是( )ABCD8、在圆内接四边形ABCD中,A、B、C的度数之比为2:4:7,则B的度数为( )A140°B100°C80°D40°9、如图,PA,PB是O的切线,A,B是切点,点C为O上一点,若ACB70°,则P的度数为( ) A70°B50°C20°D40°10、如图,是的直径,弦,垂足为,若,则( )A5B8C9D10第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,PM,PN分别与O相切于A,B两点,C为O上异于A,B的一点,连接AC,BC若P58°,则ACB的大小是_2、 “化圆为方”是古希腊尺规作图难题之一,即:求作一个正方形,使其面积等于给定圆的面积这个问题困扰了人类上千年,直到19世纪,该问题被证明仅用直尺和圆规是无法完成的如果借用一个圆形纸片,我们就可以化圆为方,方法如下:已知:O(纸片),其半径为求作:一个正方形,使其面积等于O的面积作法:如图1,取O的直径,作射线,过点作的垂线;如图2,以点为圆心,为半径画弧交直线于点;将纸片O沿着直线向右无滑动地滚动半周,使点,分别落在对应的,处;取的中点,以点为圆心,为半径画半圆,交射线于点;以为边作正方形正方形即为所求根据上述作图步骤,完成下列填空:(1)由可知,直线为O的切线,其依据是_(2)由可知,则_,_(用含的代数式表示)(3)连接,在Rt中,根据,可计算得_(用含的代数式表示)由此可得3、龙湖实验中学的操场有4条等宽的跑道,每条跑道是由两条直跑道和两个半圆形弧道连接而成,请根据小泓与瞿老师的对话计算每条跑道的宽度是_米4、如图,点D为边长是的等边ABC边AB左侧一动点,不与点A,B重合的动点D在运动过程中始终保持ADB120°不变,则四边形ADBC的面积S的最大值是 _5、平面直角坐标系中,A为x轴上一动点,连接AC,将AC绕A点顺时针旋转90°得到AB,当BK取最小值时,点B的坐标为_三、解答题(5小题,每小题10分,共计50分)1、如图,AB为O的弦,OCAB于点M,交O于点C若O的半径为10,OM:MC3:2,求AB的长2、已知:如图,A为上的一点求作:过点A且与相切的一条直线作法:连接OA;以点A为圆心,OA长为半径画弧,与的一个交点为B,作射线OB;以点B为圆心,OA长为半径画弧,交射线OB于点P(不与点O重合);作直线PA直线PA即为所求(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接BA由作法可知点A在以OP为直径的圆上( )(填推理的依据)OA是的半径,直线PA与相切( )(填推理的依据)3、定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半如图1,AO已知:如图2,AC是O的一条弦,点D在O上(与A、C不重合),联结DE交射线AO于点E,联结OD,O的半径为5,tanOAC(1)求弦AC的长(2)当点E在线段OA上时,若DOE与AEC相似,求DCA的正切值(3)当OE1时,求点A与点D之间的距离(直接写出答案)4、如图,A,P,B,C是O上的四点,APCCPB60°(1)判断ABC的形状,并证明你的结论;(2)求证:PAPBPC5、如图,已知线段,点A在线段上,且,点B为线段上的一个动点以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,旋转角分别为和若旋转后M、N两点重合成一点C(即构成),设(1)的周长为_;(2)若,求x的值-参考答案-一、单选题1、D【分析】连接OF,OE,OG,根据切线的性质及角平分线的判定可得OB平分,OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得【详解】解:连接OF,OE,OG,AB、BC、CD分别与相切,且,OB平分,OC平分,SOBC=12OB·OC=12BC·OF,故选:D【点睛】题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键2、B【详解】解:A是轴对称图形,不是中心对称图形,故不符合题意;B既是轴对称图形,又是中心对称图形,故符合题意;C不是轴对称图形,是中心对称图形,故不符合题意;D是轴对称图形,不是中心对称图形,故不符合题意故选:B【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合3、B【详解】直径是圆中最大的弦;故正确,同圆或等圆中长度相等的两条弧一定是等弧;故不正确半径相等的两个圆是等圆;故正确弧分优弧、劣弧和半圆,故不正确同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则不正确综上所述,正确的有故选B【点睛】本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键4、A【分析】根据轴对称图形与中心对称图形的概念进行判断【详解】解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;共2个既是轴对称图形又是中心对称图形故选:A【点睛】此题主要考查了中心对称图形与轴对称图形的概念(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心5、C【分析】根据O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案【详解】解:O的半径r=4,且点A到圆心O的距离d=5,d>r,点A在O外,故选:C【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种设O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外dr;点P在圆上d=r;点P在圆内dr6、D【分析】根据题意及旋转的性质可得是等边三角形,则,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积【详解】解:如图,设与相交于点,旋转,是等边三角形,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键7、B【分析】根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解【详解】解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;B、是中心对称图形但不是轴对称图形,故符合题意;C、既不是轴对称图形也不是中心对称图形,故不符合题意;D、是轴对称图形但不是中心对称图形,故不符合题意;故选B【点睛】本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键8、C【分析】,进而求解的值【详解】解:由题意知故选C【点睛】本题考查了圆内接四边形中对角互补解题的关键在于根据角度之间的数量关系求解9、D【分析】首先连接OA,OB,由PA,PB为O的切线,根据切线的性质,即可得OAP=OBP=90°,又由圆周角定理,可求得AOB的度数,继而可求得答案【详解】解:连接OA,OB,PA,PB为O的切线,OAP=OBP=90°,ACB=70°,AOB=2P=140°,P=360°-OAP-OBP-AOB=40°故选:D【点睛】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用10、C【分析】连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得【详解】解:如图,连接,是的直径,弦,设的半径为,则在中,即解得即故选C【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键二、填空题1、或【分析】如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.【详解】解:如图,连接 (即)分别在优弧与劣弧上, PM,PN分别与O相切于A,B两点, 故答案为:或【点睛】本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.2、(1)经过半径外端且垂直于这条半径的直线是圆的切线;(2),;(3) 【分析】(1)根据切线的定义判断即可(2)由=AC+,计算即可;根据计算即可(3)根据勾股定理,得即为正方形的面积,比较与圆的面积的大小关机即可【详解】解:(1)O的直径,作射线,过点作的垂线,经过半径外端且垂直于这条半径的直线是圆的切线;故答案为:经过半径外端且垂直于这条半径的直线是圆的切线; (2)根据题意,得AC=r,=r,=AC+=r+r,=;,MA=-r=,故答案为:,; (3)如图,连接ME,根据勾股定理,得=; 故答案为:【点睛】本题考查了圆的切线的定义,勾股定理,圆的周长,正方形的面积和性质,熟练掌握圆的切线的定义,勾股定理,正方形的性质是解题的关键3、【分析】设跑道的宽为米,根据直道长度一样,外圈与内圈的差是两个圆周长的差,列出式子求解即可【详解】解:设跑道的宽为米,由对称性设内圈两个半圆形弧道拼成的圆的半径为,根据题意可得:,解得:,故答案是:【点睛】本题考查了圆的基本概念,一元一次方程,解题的关键是根据题意列出等式求解4、【分析】根据题意作等边三角形的外接圆,当点运动到的中点时,四边形ADBC的面积S的最大值,分别求出两个三角形的面积,相加即可【详解】解:根据题意作等边三角形的外接圆,D在运动过程中始终保持ADB120°不变,在圆上运动,当点运动到的中点时,四边形ADBC的面积S的最大值,过点作的垂线交于点,如图:,在中,解得:,过点作的垂线交于,故答案是:【点睛】本题考查了等边三角形,外接圆、勾股定理、动点问题,解题的关键是,作出图象及掌握圆的相关性质5、【分析】如图,作BHx轴于H由ACOBAH(AAS),推出BHOAm,AHOC4,可得B(m+4,m),令xm+4,ym,推出yx4,推出点B在直线yx4上运动,设直线yx4交x轴于E,交y轴于F,作KMEF于M,根据垂线段最短可知,当点B与点M重合时,BK的值最小,利用等腰直角三角形的性质可得M的坐标,从而可得答案【详解】解:如图,作BHx轴于HC(0,4),K(2,0),OC4,OK2,ACAB,AOCCABAHB90°,CAO+OCA90°,BAH+CAO90°,ACOBAH,ACOBAH(AAS),BHOAm,AHOC4,B(m+4,m),令xm+4,ym,yx4,点B在直线yx4上运动,设直线yx4交x轴于E,交y轴于F,则 作KMEF于M,过作于 则 根据垂线段最短可知,当点B与点M重合时,BK的值最小,此时B(3,1),故答案为:(3,1)【点睛】本题考查坐标与图形的变化旋转,全等三角形的判定和性质,一次函数的应用,垂线段最短等知识,解题的关键是正确寻找点B的运动轨迹,学会利用垂线段最短解决最短问题三、解答题1、【分析】连接OA,根据O的半径为10,OM:MC3:2可求出OM的长,由勾股定理求出AM的长,再由垂径定理求出AB的长即可【详解】解:如图,连接OAOM:MC3:2,OC10,OM=6OCAB,OMA90°,AB2AM在RtAOM中,AO10,OM6,AM8AB2AM =16【点睛】本题考查的是垂径定理、勾股定理,掌握垂径定理的推论是解题的关键2、(1)图见解析;(2)直径所对的圆周角是直角,切线的判定定理【分析】(1)根据所给的几何语言作出对应的图形即可;(2)根据圆周角定理和切线的判定定理解答即可【详解】解:(1)补全图形如图所示,直线AP即为所求作;(2)证明:连接BA,由作法可知,点A在以OP为直径的圆上,(直径所对的圆周角是直角),OA是的半径,直线PA与相切(切线的判定定理),故答案为:直径所对的圆周角是直角,切线的判定定理【点睛】本题考查基本作图-画圆、圆周角定理、切线的判定定理,熟知复杂作图是在基本作图的基础上进行作图,一般是结合几何图形的性质,因此熟练掌握基本图形的性质和切线的判定是解答的关键3、(1)8(2)(3)或【分析】(1)过点O作OHAC于点H,由垂径定理可得AHCHAC,由锐角三角函数和勾股定理可求解;(2)分两种情况讨论,由相似三角形的性质可求AG,EG,CG的长,即可求解;(3)分两种情况讨论,由相似三角形和勾股定理可求解(1)如图2,过点O作OHAC于点H,由垂径定理得:AHCHAC,在RtOAH中,设OH3x,AH4x,OH2+AH2OA2,(3x)2+(4x)252,解得:x±1,(x1舍去),OH3,AH4,AC2AH8;(2)如图2,过点O作OHAC于H,过E作EGAC于G,DEOAEC,当DOE与AEC相似时可得:DOEA或者DOEACD;,ACDDOE当DOE与AEC相似时,不存在DOEACD情况,当DOE与AEC相似时,DOEA,ODAC,ODOA5,AC8,AGEAHO90°,GEOH,AEGAOH,在RtCEG中,;(3)当点E在线段OA上时,如图3,过点E作EGAC于G,过点O作OHAC于H,延长AO交O于M,连接AD,DM,由(1)可得 OH3,AH4,AC8,OE1,AE4,ME6,EGOH,AEGAOH,AG,EG,GC,EC,AM是直径,ADM90°EGC,又MC, EGCADM,AD2;当点E在线段AO的延长线上时,如图4,延长AO交O于M,连接AD,DM,过点E作EGAC于G,同理可求EG,AG,AE6,GC,EC,AM是直径,ADM90°EGC,又MC,EGCADM, ,AD,综上所述:AD的长是或【点睛】本题考查了垂径定理,勾股定理,解直角三角形,求角的正切值,相似三角形的性质与判定,圆周角定理,正切的作出辅助线是解题的关键4、(1)ABC是等边三角形,证明见解析;(2)见解析【分析】(1)利用圆周角定理可得BAC=CPB,ABC=APC,而APC=CPB=60°,所以BAC=ABC=60°,从而可判断ABC的形状;(2)如图所示,在PC取一点E使得AE=AP,先证明APE是等边三角形,得到AP=PE,AEP=60°,可以推出AEC=APB,然后证明APBAEC得到BP=CE,即可证明PC=PE+CE=AP+BP【详解】解:(1)ABC是等边三角形证明如下:由圆周角定理:BAC=CPB,ABC=APCAPCCPB60°,BACABC60°,ACB180°BACABC180°60°60°60°ABC是等边三角形(2)如图所示,在PC取一点E使得AE=AP,APE=60°,AP=AE,APE是等边三角形,AP=PE,AEP=60°,AEC=120°,又APCCPB60°,APB=120°,AEC=APB,ABC是等边三角形,AB=AC,又ABP=ACE,APBAEC(AAS),BP=CE,PC=PE+CE=AP+BP【点睛】本题考查了圆周角定理、等边三角形的性质与判定,全等三角形的性质与判定,解题的关键是掌握圆周角定理,正确求出ABC=BAC=60°5、(1)4(2)【分析】(1)由旋转知:AM=AC=1,BN=BC,将ABC的周长转化为MN;(2)由+=270°,得ACB=90°,利用勾股定理列方程即可(1)解:由旋转知:AM=AC=1,BN=BC=3-x,ABC的周长为:AC+AB+BC=MN=4;故答案为:4;(2)解:+=270°,CAB+CBA=360°-270°=90°,ACB=180°-(CAB+CBA)=180°-90°=90°,AC2+BC2=AB2,即12+(3-x)2=x2,解得【点睛】本题主要考查了旋转的性质,勾股定理等知识,证明ACB=90°是解题的关键

    注意事项

    本文(难点解析沪科版九年级数学下册第24章圆章节练习试题(含答案及详细解析).docx)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开