难点详解京改版九年级数学下册第二十四章-投影、视图与展开图同步测试试卷(含答案详解).docx
-
资源ID:32657003
资源大小:227.96KB
全文页数:18页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
难点详解京改版九年级数学下册第二十四章-投影、视图与展开图同步测试试卷(含答案详解).docx
九年级数学下册第二十四章 投影、视图与展开图同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某正方体的每个面上都有一个汉字,如图是它的一种展开图,则在原正方体中,与“展”字所在面相对面上的汉字是()A长B春C新D区2、如图所示的几何体的左视图是( )ABCD3、以下四个结论( )一个圆柱的侧面一定可以展开成一个长方形;圆柱、圆锥的底面都是圆;一个圆柱的侧面一定可以展开成一个正方形一个圆锥的侧面一定可以展开成一个半圆其中正确的结论个数为( )A1个B2个C3个D4个4、如图是一个正方体的平面展开图,若正方体相对面上的代数式的和都等于-1,则x的值是()A-1B1C-2D25、如图所示的立体图形是一个圆柱被截去四分之一后得到的几何体,它的左视图是( )ABCD6、如图是一个正方体的平面展开图,原正方体中“美”的对面是( )A榆B丽C通D建7、下列哪种光线形成的投影是平行投影()A太阳B探照灯C手电筒D路灯8、下图是一个几何体的展开图,该几何体是( )A圆柱体B四棱柱C三棱锥D圆锥体9、下面那个图形经过折叠不能得到一个正方体( )ABCD10、如图所示,矩形纸片ABCD中,AB4cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AD的长为()A8cmB7cmC6cmD5cm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为_(结果保留)2、正方体的表面展开图如图所示,“遇”的相对面上的字为_3、正方体每一面不同的颜色对应着不同的数字,将四个这样的正方体如图拼成一个水平放置的长方体,那么长方体的下底面数字和为_4、一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,则该几何体至少是用 _个小立方块搭成的5、用剪刀把桌上的正方体纸盒按任意方式沿棱展开,你能得到哪些不同的展开图?比比哪一小组的展开图更与众不同第一类,中间四连方,两侧各一个,共_种第二类,中间三连方,两侧各有一、二个,共_种第三类,中间二连方,两侧各有二个,只有_种第四类,两排各三个,只有_种三、解答题(5小题,每小题10分,共计50分)1、如图是由7个相同的小立方块搭成的几何体请画出主视图、左视图和俯视图2、如图所示的是一个正方体的表面展开图,折成正方体后其相对面上的两个数互为相反数,求ab的值3、已知由几个大小相同的小立方块搭成的几何体,从上面观察,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请分别画出从正面、左面看到的这个几何体的形状图(几何体中每个小立方块的棱长都是1cm)画图时要用刻度尺4、如图,路灯灯泡在线段上,在路灯下,王华的身高用线段表示,她在地上的影子用线段表示,小亮的身高用线段表示(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子;(2)如果王华的身高米,她的影长米,且她到路灯的距离米,求路灯的高度5、如图是正方体的两种表面展开图,用字母C,D分别表示与A、B相对的面,请分别在图1、图2上标出C、D-参考答案-一、单选题1、C【分析】利用正方体及其表面展开图的特点解题【详解】解:这是一个正方体的平面展开图,共有六个面,与“发”字所在面相对的面上的汉字是“长”,与“展”字所在面相对的面上的汉字是“新”,与“春”字所在面相对的面上的汉字是“区”故选C【点睛】本题考查了正方体的展开图中相对两个面上的文字,注意正方体的平面展开图中相对的两个面一定相隔一个小正方形对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象2、B【分析】根据左视图是从左面看到的图形判定则可【详解】解:从左边看,是一个正方形,正方形的右上角有一条虚线故选:B【点睛】本题主要考查了几何体的三种视图和学生的空间想象能力,正确掌握观察角度是解题关键3、B【分析】根据圆柱,圆锥侧面展开图以及圆锥与圆柱的底面形状,逐项分析判断即可【详解】一个圆柱的侧面一定可以展开成一个长方形,正确;圆柱、圆锥的底面都是圆,正确;一个圆柱的侧面不一定可以展开成一个正方形,可能是长方形,故不正确;一个圆锥的侧面不一定可以展开成一个半圆,可能是扇形;故不正确故正确的有,共2个故选B【点睛】本题考查了立体图形的认识,圆锥和圆柱的侧面展开图,掌握基本图形的展开图是解题的关键4、B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相对的面上的数字或代数式的和为1,列出方程求解即可【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形“2”与“-3”是相对面,“1”与“-2”是相对面,“-1”与“1-x”是相对面,相对的面上的数字或代数式的和为1,-1+1-x=1,解得,故选B【点睛】本题考查了正方体相对两个面上的文字,一元一次方程解题的关键是掌握找正方体相对两个面上的文字的方法,注意正方体的空间图形,从相对面入手,分析及解答问题5、C【分析】根据左视图的定义,左视图就是物体由左向右方投影得到的视图,即可得出结论【详解】解:根据左视图的定义,该几何体的左视图是:故选:C 【点睛】此题考查了几何体左视图的判断,掌握左视图的定义是解题关键6、A【分析】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,即可求解【详解】解:根据题意得:原正方体中“美”的对面是 “榆”故选:A【点睛】本题主要考查了正方体的平面展开图的特征,熟练掌握正方体的表面展开图,相对的面之间一定相隔一个正方形是解题的关键7、A【分析】中心投影是指把光由一点向外散射形成的投影,平行投影是在一束平行光线照射下形成的投影,根据定义逐一分析即可得到答案.【详解】解:太阳光线形成的投影是平行投影,探照灯,手电筒,路灯形成的投影是中心投影,故选A【点睛】本题考查的是平行投影与中心投影的含义及应用,根据定义熟练判断中心投影与平行投影是解题的关键.8、D【分析】根据侧面展开图为一个扇形,底面是一个圆,所以该几何体是圆锥【详解】解:由题意,侧面展开图为一个扇形,底面是一个圆,该几何体是圆锥体;故选:D【点睛】本题考查了几何体的侧面展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键9、D【分析】根据正方体展开图的常见形式作答即可【详解】解:由展开图可知:A、B、C能围成正方体,不符合题意;D、围成几何体时,有两个面重合,故不能围成正方体,符合题意故选:D【点睛】本题考查了展开图折叠成几何体熟记能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态是解题的关键10、C【分析】可求得扇形弧长,则它等于圆锥底面圆的周长,从而可求得圆的半径,则可知DE的长,从而可得AD的长【详解】解:AB=4cm,ABBF的弧长 设圆的半径为r,则2r=2r=1由题意得:DE=2cm四边形ABEF为正方形AE=AB=4cmAD=AE+DE=4+2=6(cm)故选:C【点睛】本题考查了正方形的性质,弧长及圆周长的计算,关键是抓住圆锥的侧面展开图是扇形,其弧长等于底面圆的周长二、填空题1、【分析】根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积,相加即可得出该几何体的全面积【详解】解:由图示可知,圆锥的高为4,底面圆的直径为6,圆锥的母线为:,圆锥的侧面积为:,底面圆的面积为:,该几何体的全面积为:,故答案为:【点睛】此题主要考查了由三视图判断几何体,圆锥侧面积公式,根据已知得母线长,再利用圆锥侧面积公式求出是解决问题的关键2、中【分析】根据正方体表面展开图的特征进行判断即可【详解】解:由正方体表面展开图的“相间、Z端是对面”可知,“遇”与“中”是对面,“见”与“纷”是对面,“缤”与“附”是对面,故答案为:中【点睛】本题考查正方体的展开与折叠,掌握正方体表面展开图的特征是正确判断的前提3、17【分析】由长方体图可知与红色相邻的有四种颜色:紫色,白色,蓝色,黄色,所以与之相对的颜色是绿色;与黄色相邻的为白色,红色,蓝色,绿色,所以与之相对的是紫色,剩下最后一组相对的颜色是蓝色与白色,据此计算即可得【详解】解:由长方体图可知与红色相邻的有四种颜色:紫色,白色,蓝色,黄色,所以与之相对的颜色是绿色;与黄色相邻的为白色,红色,蓝色,绿色,所以与之相对的是紫色最后一组相对的颜色是蓝色与白色长方体下底面四个面应是:紫,黄,绿,白对应数字分别是:5,2,6,4,下底面数字之和为:,故答案为:17【点睛】题目主要考查立方体的基本性质,掌握立方体的基本性质,结合一定的立体感是解题关键4、6【分析】根据题意可以得到该几何体从正面和上面看至少有多少个小立方体,综合考虑即可解答本题【详解】解:从正面看至少有三个小立方体且有两层;从上面看至少有五个小立方体,且有两列;只需要保证从正面看的上面一层有一个,从上面看有五个小立方体即可满足题意,最少是用6个小立方块搭成的,故答案为:6【点睛】此题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案5、六 三 一 一 【详解】略三、解答题1、见解析【分析】主视图有3列,每列小正方形数目分别为2,1,3;左视图有2列,每列小正方形数目分别为3,2;俯视图有3列,每列小正方形数目分别为2,1,1【详解】解:如图所示,【点睛】本题考查作图三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形2、4【分析】正方体的表面展开图,相对的面之间相隔一个正方形,根据这一特点确定,的相对面,再根据“相对面上的两个数互为相反数”求出a,b,c的值,然后求解即可【详解】解:由题意得:的相对面是-2,c的相对面是3,b的相对面是-1,【点睛】本题主要考查了正方体展开图的相对面,相反数,代数式求值,解题的关键在于能够熟练掌握正方体展开图3、见解析【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为1,3,4,左视图有2列,每列小正方形数目分别为3,4据此可画出图形【详解】解:如图所示,即为所求:从正面看 从左面看【点睛】本题考查几何体的三视图画法由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字,理解这个画法是解题关键4、(1)见解析;(2)路灯高为米【分析】(1)根据投影的特点即可作图;(2)根据图形的特点得到BACGDC,故可列出 比例式求解【详解】(1)如图,为灯泡位置,为小亮影子(2)BACGDC即GD=4.4米,路灯高为米【点睛】此题主要考查投影与相似的实际应用,解题的关键是熟知相似三角形的判定与性质5、见解析【分析】利用正方体及其表面展开图的特点解题【详解】解:如图所示:【点睛】此题主要考查正方体及其表面展开图,注意正方体的空间图形,从相对面入手,分析及解答问题