难点详解北师大版八年级数学下册第三章图形的平移与旋转专项练习试题(名师精选).docx
-
资源ID:32668209
资源大小:922.34KB
全文页数:26页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
难点详解北师大版八年级数学下册第三章图形的平移与旋转专项练习试题(名师精选).docx
八年级数学下册第三章图形的平移与旋转专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD2、如图,在ABC中,BAC130°,将ABC绕点C逆时针旋转得到DEC,点A,B的对应点分别为D,E,连接AD当点A,D,E在同一条直线上时,则BAD的大小是()A80°B70°C60°D50°3、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD4、下列四个图案中,是中心对称图形的是()ABCD5、下列图标中,既是中心对称图形又是轴对称图形的是( )ABCD6、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD7、下列产品logo图片中,既是轴对称图形又是中心对称图形的是( )ABCD8、下列图形中,既是轴对称图形又是中心对称图形的是( ) A等边三角形B平行四边形C正五边形D正六边形9、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )A(a,b)B(-a,-b)C(a+2,b+4)D(a+4,b+2)10、点P(3,1)关于原点对称的点的坐标是( )A(3,1)B(3,1)C(3,1)D(3,1)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、坐标平面内的点P(m,2020)与点Q(2021,n)关于原点对称,则mn_2、如图,将RtABO绕原点O逆时针旋转90°得到CDO,则点D的坐标是_3、如图所示,在ABC中,B40°,将ABC绕点A逆时针旋转至ADE的位置,则ADE_4、若点与点关于原点对称,则(_)5、如图,将三角形ABC绕点A按逆时针方向旋转100°得到三角形ABC,连接BB,则A BB的度数为_三、解答题(5小题,每小题10分,共计50分)1、在等边中,是边上一动点,连接,将绕点顺时针旋转120°,得到,连接(1)如图1,当、三点共线时,连接,若,求的长;(2)如图2,取的中点,连接,猜想与存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接、交于点若,请直接写出的值2、阅读与理解:如图1,等边BDE按如图所示方式设置操作与证明:(1)操作:固定等边ABC,将BDE绕点B按逆时针方向旋转120°,连接AD,CE,如图2;在图2中,请直接写出线段CE与AD之间具有怎样的大小关系(2)操作:若将图1中的BDE,绕点B按逆时针方向旋转任意一个角度(60°180°),连接AD,CE,AD与CE相交于点M,连BM,如图3;在图3中线段CE与AD之间具有怎样的大小关系?EMD的度数是多少?证明你的结论猜想与发现:(3)根据上面的操作过程,请你猜想在旋转过程中,DMB的度数大小是否会随着变化而变化?请证明你的结论3、如图,在平面直角坐标系中,已知点A(1,4),B(4,4),C(2,1)(1)请在图中画出ABC;(2)将ABC向左平移5个单位,再沿x轴翻折得到A1B1C1,请在图中画出A1B1C1;(3)若ABC 内有一点P(a,b),则点P经上述平移、翻折后得到的点P1的坐是 4、如图1,D为等边ABC内一点,将线段AD绕点A逆时针旋转60°得到AE,连接CE,BD的延长线与AC交于点G,与CE交于点F(1)求证:BDCE;(2)如图2,连接FA,小颖对该图形进行探究,得出结论:BFCAFBAFE小颖的结论是否正确?若正确,请给出证明;若不正确,请说明理由5、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上,点A的坐标为(1,-4)(1)A1B1C1是ABC关于y轴的对称图形,则点A的对称点A1的坐标是_,并在图中画出A1B1C1(2)将ABC绕原点逆时针旋转90°得到A2B2C2,则A点的对应点A2的坐标是_,并在图中画出A2B2C2 -参考答案-一、单选题1、D【详解】解:是轴对称图形,不是中心对称图形,故本选项不符合题意;是轴对称图形,不是中心对称图形,故本选项不符合题意;不是轴对称图形,也不是中心对称图形,故本选项不符合题意;既是轴对称图形,又是中心对称图形,故本选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合2、A【分析】根据三角形旋转得出,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到DAC=50°,由此即可求解【详解】证明:绕点C逆时针旋转得到,ADC=DAC,点A,D,E在同一条直线上,DAC=50°,BAD=BAC-DAC=80°故选A【点睛】本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质3、C【详解】解:选项A中的图形是轴对称图形,不是中心对称图形,故A不符合题意;选项B中的图形既不是轴对称图形,也不是中心对称图形,故B不符合题意;选项C中的图形既是轴对称图形,也是中心对称图形,故C符合题意;选项D中的图形不是轴对称图形,是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形与中心对称图形的识别,轴对称图形的定义:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形的定义:把一个图形绕某点旋转后能够与自身完全重合;掌握定义是解本题的关键.4、A【分析】中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键5、B【分析】由题意直接根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得出答案【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B既是轴对称图形,又是中心对称图形,故本选项符合题意;C不是轴对称图形,是中心对称图形,故本选项不符合题意;D是轴对称图形,不是中心对称图形,故本选项不符合题意故选:B【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形6、B【分析】根据轴对称图形(一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称)和中心对称图形(指把一个图形绕着某一点旋转,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称)的概念对各选项分析判断即可得解【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B既是轴对称图形,又是中心对称图形,故本选项符合题意;C不是轴对称图形,是中心对称图形,故本选项不符合题意;D是轴对称图形,不是中心对称图形,故本选项不符合题意故选:B【点睛】题目主要考查轴对称与中心对称图形的识别,理解这两个定义是解题关键7、C【分析】根据轴对称图形、中心对称图形的定义解题【详解】解:A.是轴对称图形,不是中心对称图形,故A不符合题意;B.是中心对称图形,不是轴对称图形,故B不符合题意;C. 既是轴对称图形又是中心对称图形,故C符合题意;D. 是轴对称图形,不是中心对称图形,故D不符合题意,故选:C【点睛】本题考查轴对称图形与中心对称图形的识别,轴对称图形的关键是找对称轴,图形两部分沿着对称轴折叠可重合;中心对称图形是要寻找对称中心,旋转180°后能与原图重合8、D【分析】根据轴对称图形,中心对称图形的定义去判断即可【详解】等边三角形是轴对称图形,不是中心对称图形,A不符合题意;平行四边形不是轴对称图形,是中心对称图形,B不符合题意;正五边形是轴对称图形,不是中心对称图形,C不符合题意;正六边形是轴对称图形,也是中心对称图形,D符合题意;故选D【点睛】本题考查了轴对称图形,中心对称图形的定义,轴对称图形即将一个图形沿着某条直线折叠,直线两旁的部分完全重合,中心对称图形即将一个图形绕某点旋转180°后与原图形完全重合,熟练掌握两种图形的定义是解题的关键9、D【分析】根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标【详解】解:ABO是由ABO平移得到的,点A的坐标为(-1,2),它的对应点A的坐标为(3,4),ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,ABO内任意点P(a,b)平移后的对应点P的坐标为(a+4,b+2)故选:D【点睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小10、C【分析】据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可【详解】解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1)故选:C【点睛】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形二、填空题1、-1【分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”求出m、n的值,然后相加计算即可得解【详解】解:点P(m,-2020)与点Q(2021,n)关于原点对称,m=2021,n=2020,mn=1.故答案为:-1.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数2、(-2,3)【分析】根据旋转的性质及直角三角形的性质解答【详解】解:由图易知DCAB2,COAO3,OCDOAB90°,点A在第二象限,点D的坐标是(2,3),故答案为:(2,3)【点睛】注意旋转前后对应线段的长度不变,构造全等直角三角形求解即可3、40°40度【分析】根据ABC绕点A逆时针旋转至ADE,得到ABCADE,即可得到ADEB40°,问题得解【详解】解:ABC绕点A逆时针旋转至ADE,ABCADE,ADEB40°故答案为:40°【点睛】本题考查了图形旋转的性质,熟知旋转前后的两个图形全等是解题关键4、1【分析】根据关于原点对称的点的特点,可得,然后代入计算即可【详解】解:点与点关于原点对称,则,故答案为:【点睛】题目主要考查关于原点对称的点的特点,乘方运算等,理解关于原点对称的点的特点是解题关键5、40°【分析】根据旋转角的定义求出大小,再利用旋转的性质,求证,最后通过等腰三角形性质进行求解【详解】解:由旋转角定义可知:,由旋转性质可知:与为对应边,故,为等腰三角形, 故答案为:40°【点睛】本题主要是考察了旋转的相关知识点,利用旋转角的定义求出某些角的度数,以及旋转前后对应边相等进行解题,是解决此类问题的关键三、解答题1、(1);(2);证明见解析;(3)【分析】(1)过点作于点,根据等边三角形的性质与等腰的性质以及勾股定理求得,进而求得,在中,勾股定理即可求解;(2)延长至,使得,连接,过点作,交于点,根据平行四边形的性质可得,证明是等边三角形,进而证明,即可证明是等边三角形,进而根据三线合一以及含30度角的直角三角形的性质,可得;(3)过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,先证明,结合中位线定理可得,进而可得,设,分别勾股定理求得,进而根据求得,即可求得的值【详解】(1)过点作于点,如图将绕点顺时针旋转120°,得到,是等边三角形,在中,(2)如图,延长至,使得,连接,过点作,交于点,点是的中点又四边形是平行四边形,将绕点顺时针旋转120°,得到,是等边三角形,是等边三角形设,则,,,是等边三角形,即(3) 如图,过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,四点共圆由(2)可知,将绕点顺时针旋转120°,得到,是的中点,是的中位线是等腰直角三角形四边形是矩形,设在中,,在中,在中【点睛】本题考查了旋转的性质,等边三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,同弧所对的圆周角相等,四点共圆,三角形全等的性质与判定,等腰三角形的性质与判定;掌握旋转的性质,等边三角形的性质与判定是解题的关键2、(1)ECAD;(2)ECAD,EMD60°,见解析;(3)DMB的度数大小不变,见解析【分析】(1)利用证明即可;(2)利用证明,得,再利用三角形内角和定理可得答案;(3)过点作于点,于点,由(2)中全等知,则平分,得【详解】解:(1);将绕点按逆时针方向旋转,在和中,;(2),理由如下:将绕点按逆时针方向旋转度,与是等边三角形,(3)不变,理由如下:过点作于点,于点,平分,的度数大小不变【点睛】本题是几何变换综合题,主要考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,角平分线的判定等知识,解题的关键是证明3、(1)见解析;(2)见解析;(3)(a5,b)【分析】(1)结合直角坐标系,可找到三点的位置,顺次连接即可得出ABC(2)将各点分别向左平移5个单位长度,再作出关于x轴的对称点,顺次连接即可得到A1B1C1;(3)根据点的坐标平移规律可得结论【详解】解:(1)如图,ABC即为所画(2)如图,A1B1C1即为所画(3)点P(a,b)向左平移5个单位后的坐标为(a5,b),关于x轴对称手点的坐标为(a5,b) 故答案为:(a5,b)【点睛】此题考查了平移作图、轴对称变换以及直角坐标系的知识,解答本题的关键是掌握平移和轴对称的特点,找到各点在直角坐标系的位置4、(1)见解析;(3)正确,见解析【分析】(1)根据旋转的性质可得ADAE,DAE60°,结合已知条件可得BACDAE,进而证明ABDACE,即可证明BDCE;(2)过A作BD,CF的垂线段分别交于点M,N,ABDACE,BDCE,由面积相等可得AMAN,证明RtAFMRtAFN,进而证明BFCAFBAFE60°【详解】解:证明:(1)如图1,线段AD绕点A逆时针旋转60°得到AE,ADAE,DAE60°,BAC60°,BACDAE,BADCAE,在ABD和ACE中,ABDACE(SAS),BDCE,(2)由(1)可知ABDACE则ABDACE,又AGBCGF,BFCBAC60°,BFE120°,过A作BD,CF的垂线段分别交于点M,N,又ABDACE,BDCE,由面积相等可得AMAN,在RtAFM和RtAFN中,RtAFMRtAFN(HL),AFMAFN,BFCAFBAFE60°【点睛】本题考查了三角形全等的性质与判定,旋转的性质,正确的添加辅助线找到全等三角形并证明是解题的关键5、(1)图见解析,A1(-1,-4);(2)图见解析,A2(4,1)【分析】(1)根据网格结构,找出点A、B、C关于y轴对称的点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标即可;(2)根据网格结构,找出点A、B、C绕点逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标即可【详解】解:(1)如图所示,A1B1C1即为所求作的三角形,点A1(-1,-4);(2)如图所示,A2B2C2即为所求作的三角形,点A2(4,1)故答案为:(4,1)【点睛】本题考查了旋转和轴对称作图,掌握画图的方法和图形的特点是关键;注意根据对应点得到对称轴