高中数学必修一高一数学第五章(第六课时)正弦定理余弦定理()公开课教案课件课时训练练习教案课件.doc
-
资源ID:32724846
资源大小:347.04KB
全文页数:13页
- 资源格式: DOC
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
高中数学必修一高一数学第五章(第六课时)正弦定理余弦定理()公开课教案课件课时训练练习教案课件.doc
课 题:正弦定理、余弦定理(4)教学目的:1进一步熟悉正、余弦定理内容;2能够应用正、余弦定理进行边角关系的相互转化;3能够利用正、余弦定理判断三角形的形状;4能够利用正、余弦定理证明三角形中的三角恒等式教学重点:利用正、余弦定理进行边角互换时的转化方向教学难点: 三角函数公式变形与正、余弦定理的联系授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学方法:启发引导式1启发学生在证明三角形问题或者三角恒等式时,要注意正弦定理、余弦定理的适用题型与所证结论的联系,并注意特殊正、余弦关系的应用,比如互补角的正弦值相等,互补角的余弦值互为相反数等;2引导学生总结三角恒等式的证明或者三角形形状的判断,重在发挥正、余弦定理的边角互换作用教学过程:一、复习引入:正弦定理:余弦定理: ,二、讲解范例:例1在任一ABC中求证:证:左边=0=右边例2 在ABC中,已知,B=45° 求A、C及c解一:由正弦定理得:B=45°<90° 即b<a A=60°或120°当A=60°时C=75° 当A=120°时C=15° 解二:设c=x由余弦定理 将已知条件代入,整理:解之:当时 从而A=60° ,C=75°当时同理可求得:A=120° ,C=15°例3 在ABC中,BC=a, AC=b, a, b是方程的两个根,且2cos(A+B)=1 求(1)角C的度数 (2)AB的长度 (3)ABC的面积解:(1)cosC=cosp-(A+B)=-cos(A+B)=- C=120°(2)由题设: AB2=AC2+BC2-2ACBCosC 即AB=(3)SABC=例4 如图,在四边形ABCD中,已知ADCD, AD=10, AB=14, ÐBDA=60°, ÐBCD=135° 求BC的长解:在ABD中,设BD=x则即 整理得:解之: (舍去)由余弦定理: 例5 ABC中,若已知三边为连续正整数,最大角为钝角,1°求最大角 ; 2°求以此最大角为内角,夹此角两边之和为4的平行四边形的最大面积解:1°设三边 且C为钝角 解得 或3 但时不能构成三角形应舍去当时 2°设夹C角的两边为 S当时S最大=例6 在ABC中,AB5,AC3,D为BC中点,且AD4,求BC边长分析:此题所给题设条件只有边长,应考虑在假设BC为后,建立关于的方程而正弦定理涉及到两个角,故不可用此时应注意余弦定理在建立方程时所发挥的作用因为D为BC中点,所以BD、DC可表示为,然用利用互补角的余弦互为相反数这一性质建立方程解:设BC边为,则由D为BC中点,可得BDDC,在ADB中,cosADB在ADC中,cosADC又ADBADC180°cosADBcos(180°ADC)cosADC解得,2, 所以,BC边长为2评述:此题要启发学生注意余弦定理建立方程的功能,体会互补角的余弦值互为相反数这一性质的应用,并注意总结这一性质的适用题型另外,对于本节的例2,也可考虑上述性质的应用来求解sinA,思路如下:由三角形内角平分线性质可得,设BD5,DC3,则由互补角ADC、ADB的余弦值互为相反数建立方程,求出BC后,再结合余弦定理求出cosA,再由同角平方关系求出sinA三、课堂练习:1半径为1的圆内接三角形的面积为025,求此三角形三边长的乘积解:设ABC三边为a,b,c则ABC又,其中R为三角形外接圆半径, abc4RSABC4×1×0251所以三角形三边长的乘积为1评述:由于题设条件有三角形外接圆半径,故联想正弦定理:,其中R为三角形外接圆半径,与含有正弦的三角形面积公式ABC发生联系,对abc进行整体求解2在ABC中,已知角B45°,D是BC边上一点,AD5,AC7,DC3,求AB解:在ADC中,cosC又0C180°,sinC在ABC中,AB评述:此题在求解过程中,先用余弦定理求角,再用正弦定理求边,要求学生注意正、余弦定理的综合运用3在ABC中,已知cosA,sinB,求cosC的值解:cosAcos45°,0A45°A90°, sinAsinBsin30°,0B0°B30°或150°B180°若B150°,则BA180°与题意不符0°B30° cosBcos(AB)cosA·cosBsinA·sinB又C180°(AB)cosCcos180°(AB)cos(AB)评述:此题要求学生在利用同角的正、余弦平方关系时,应根据已知的三角函数值具体确定角的范围,以便对正负进行取舍,在确定角的范围时,通常是与已知角接近的特殊角的三角函数值进行比较四、小结 通过本节学习,我们进一步熟悉了三角函数公式及三角形的有关性质,综合运用了正、余弦定理求解三角形的有关问题,要求大家注意常见解题方法与解题技巧的总结,不断提高三角形问题的求解能力五、课后作业:六、板书设计(略)七、课后记及备用资料: 1正、余弦定理的综合运用余弦定理是解斜三角形中用到的主要定理,若将正弦定理代入得:sin2Asin2Bsin2C2sinBsinCcosA这是只含有三角形三个角的一种关系式,利用这一定理解题,简捷明快,下面举例说明之例1在ABC中,已知sin2Bsin2Csin2AsinAsinC,求B的度数解:由定理得sin2Bsin2Asin2C2sinAsinCcosB,2sinAsinCcosBsinAsinCsinAsinC0 cos B150°例2求sin210°cos240°sin10°cos40°的值解:原式sin210°sin250°sin10°sin50°在sin2Asin2Bsin2C2sinBsinCcosA中,令B10°,C50°,则A120°sin2120°sin210°sin250°2sin10°sin50°cos120°sin210°sin250°sin10°sin50°()2例3在ABC中,已知2cosBsinCsinA,试判定ABC的形状解:在原等式两边同乘以sinA得:2cosBsinAsinCsin2A,由定理得sin2Asin2Csin2sin2A,sin2Csin2BBC故ABC是等腰三角形2一题多证例4在ABC中已知a2bcosC,求证:ABC为等腰三角形证法一:欲证ABC为等腰三角形可证明其中有两角相等,因而在已知条件中化去边元素,使只剩含角的三角函数由正弦定理得a2bcosC,即2cosC·sinBsinAsin(BC)sinBcosCcosBsinCsinBcosCcosBsinC0即sin(BC)0,BC()B、C是三角形的内角,BC,即三角形为等腰三角形证法二:根据射影定理,有abcosCccosB,又a2bcosC2bcosCbcosCccosBbcosCccosB,即又即tanBtanCB、C在ABC中,BCABC为等腰三角形证法三:cosC化简后得b2c2bc ABC是等腰三角形下课啦,咱们来听个小故事吧:活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。活动过程: 1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”主持人口述谜语: “双手抓不起,一刀劈不开, 煮饭和洗衣,都要请它来。” 主持人问:“谁知道这是什么?”生答:“水!” 一生戴上水的头饰上场说:“我就是同学们猜到的水。听大家说,我的用处可大了,是真的吗?” 主持人:我宣布:“水”是万物之源主题班会现在开始。 水说:“同学们,你们知道我有多重要吗?”齐答:“知道。” 甲:如果没有水,我们人类就无法生存。 小熊说:我们动物可喜欢你了,没有水我们会死掉的。 花说:我们花草树木更喜欢和你做朋友,没有水,我们早就枯死了,就不能为美化环境做贡献了。 主持人:下面请听快板水的用处真叫大 竹板一敲来说话,水的用处真叫大; 洗衣服,洗碗筷,洗脸洗手又洗脚, 煮饭洗菜又沏茶,生活处处离不开它。 栽小树,种庄稼,农民伯伯把它夸; 鱼儿河马大对虾,日日夜夜不离它; 采煤发电要靠它,京城美化更要它。 主持人:同学们,听完了这个快板,你们说水的用处大不大? 甲说:看了他们的快板表演,我知道日常生活种离不了水。 乙说:看了表演后,我知道水对庄稼、植物是非常重要的。 丙说:我还知道水对美化城市起很大作用。 2.主持人:水有这么多用处,你们该怎样做呢? (1)(生):我要节约用水,保护水源。 (2)(生):我以前把水壶剩的水随便就到掉很不对,以后我一定把喝剩下的水倒在盆里洗手用。 (3)(生):前几天,我看到了学校电视里转播的“水日谈水”的节目,很受教育,同学们看得可认真了,知道了我们北京是个缺水城市,我们再不能浪费水了。 (4)(生):我要用洗脚水冲厕所。 3.主持人:大家谈得都很好,下面谁想出题考考大家,答对了请给点掌声。 (1)(生):小明让爸爸刷车时把水龙头开小点,请回答对不对。 (2)(生):小兰告诉奶奶把洗菜水别到掉,留冲厕所用。 (3)一生跑上说:主持人请把手机借我用用好吗?我想现在就给姥姥打个电话,告诉她做饭时别把淘米水到掉了,用它冲厕所或浇花用。(电话内容略写) (4)一生说:主持人我们想给大家表演一个小品行吗? 主持人:可以,大家欢迎!请看小品这又不是我家的 大概意思是:学校男厕所便池堵了,水龙头又大开,水流满地。学生甲乙丙三人分别上厕所,看见后又皱眉又骂,但都没有关水管,嘴里还念念有词,又说:“反正不是我家的。” 旁白:“那又是谁家的呢?” 主持人:看完这个小品,你们有什么想法吗?谁愿意给大家说说? 甲:刚才三个同学太自私了,公家的水也是大家的,流掉了多可惜,应该把水龙头关上。 乙:上次我去厕所看见水龙头没关就主动关上了。 主持人:我们给他鼓鼓掌,今后你们发现水龙头没关会怎样做呢? 齐:主动关好。 小记者:同学们,你们好!我想打扰一下,听说你们正在开班会,我想采访一下,行吗? 主持人:可以。 小记者:这位同学,你好!通过参加今天的班会你有什么想法,请谈谈好吗? 答:我要做节水的主人,不浪费一滴水。 小记者:请这位同学谈谈好吗? 答:今天参加班会我知道了节约每一滴水要从我们每个人做起。我想把每个厕所都贴上“节约用水”的字条,这样就可以提醒同学们节约用水了。 小记者:你们谈得很好,我的收获也很大。我还有新任务先走了,同学们再见! 水跑上来说:同学们,今天我很高兴,我“水伯伯”今天很开心,你们知道了有了我就有了生命的源泉,请你们今后一定节约用水呀!让人类和动物、植物共存,迎接美好的明天! 主持人:你们还有发言的吗? 答:有。 生:我代表人们谢谢你,水伯伯,节约用水就等于保护我们人类自己。 动物:小熊上场说:我代表动物家族谢谢你了,我们也会保护你的! 花草树木跑上场说:我们也不会忘记你的贡献! 水伯伯:(手舞足蹈地跳起了舞蹈)同学们的笑声不断。 主持人:水伯伯,您这是干什么呢? 水伯伯:因为我太高兴了,今后还请你们多关照我呀! 主持人:水伯伯,请放心,今后我们一定会做得更好!再见! 4.主持人:大家欢迎老师讲话! 同学们,今天我们召开的班会非常生动,非常有意义。水是生命之源,无比珍贵,愿同学们能加倍珍惜它,做到节约一滴水,造福子孙后代。 5.主持人宣布:“水”是万物之源主题班会到此结束。 6.活动效果: 此次活动使学生明白了节约用水的道理,浪费水的现象减少了,宣传节约用水的人增多了,人人争做节水小标兵活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。活动过程: 1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”主持人口述谜语: “双手抓不起,一刀劈不开, 煮饭和洗衣,都要请它来。” 主持人问:“谁知道这是什么?”生答:“水!” 一生戴上水的头饰上场说:“我就是同学们猜到的水。听大家说,我的用处可大了,是真的吗?” 主持人:我宣布:“水”是万物之源主题班会现在开始。 水说:“同学们,你们知道我有多重要吗?”齐答:“知道。” 甲:如果没有水,我们人类就无法生存。 小熊说:我们动物可喜欢你了,没有水我们会死掉的。 花说:我们花草树木更喜欢和你做朋友,没有水,我们早就枯死了,就不能为美化环境做贡献了。 主持人:下面请听快板水的用处真叫大 竹板一敲来说话,水的用处真叫大; 洗衣服,洗碗筷,洗脸洗手又洗脚, 煮饭洗菜又沏茶,生活处处离不开它。 栽小树,种庄稼,农民伯伯把它夸; 鱼儿河马大对虾,日日夜夜不离它; 采煤发电要靠它,京城美化更要它。 主持人:同学们,听完了这个快板,你们说水的用处大不大? 甲说:看了他们的快板表演,我知道日常生活种离不了水。 乙说:看了表演后,我知道水对庄稼、植物是非常重要的。 丙说:我还知道水对美化城市起很大作用。 2.主持人:水有这么多用处,你们该怎样做呢? (1)(生):我要节约用水,保护水源。 (2)(生):我以前把水壶剩的水随便就到掉很不对,以后我一定把喝剩下的水倒在盆里洗手用。 (3)(生):前几天,我看到了学校电视里转播的“水日谈水”的节目,很受教育,同学们看得可认真了,知道了我们北京是个缺水城市,我们再不能浪费水了。 (4)(生):我要用洗脚水冲厕所。 3.主持人:大家谈得都很好,下面谁想出题考考大家,答对了请给点掌声。 (1)(生):小明让爸爸刷车时把水龙头开小点,请回答对不对。 (2)(生):小兰告诉奶奶把洗菜水别到掉,留冲厕所用。 (3)一生跑上说:主持人请把手机借我用用好吗?我想现在就给姥姥打个电话,告诉她做饭时别把淘米水到掉了,用它冲厕所或浇花用。(电话内容略写) (4)一生说:主持人我们想给大家表演一个小品行吗? 主持人:可以,大家欢迎!请看小品这又不是我家的 大概意思是:学校男厕所便池堵了,水龙头又大开,水流满地。学生甲乙丙三人分别上厕所,看见后又皱眉又骂,但都没有关水管,嘴里还念念有词,又说:“反正不是我家的。” 旁白:“那又是谁家的呢?” 主持人:看完这个小品,你们有什么想法吗?谁愿意给大家说说?