高中数学必修一第一章-公开课教案课件课时训练练习教案课件.docx
1.3.2奇偶性学习目标1.结合具体函数,了解函数奇偶性的含义.2.掌握判断函数奇偶性的方法,了解奇偶性与函数图象对称性之间的关系.3.会利用函数的奇偶性解决简单问题知识链接1关于y轴对称的点的坐标,横坐标互为相反数,纵坐标相等;关于原点对称的点的坐标,横坐标互为相反数,纵坐标互为相反数2如图所示,它们分别是哪种对称的图形?答案第一个既是轴对称图形、又是中心对称图形,第二个和第三个图形为轴对称图形3. 观察函数f(x)x和f(x)的图象(如图),你能发现两个函数图象有什么共同特征吗?答案图象关于原点对称预习导引1偶函数(1)定义:对于函数f(x)的定义域内任意一个x,都有f(x)f(x),那么函数f(x)叫做偶函数(2)图象特征:图象关于y轴对称2奇函数(1)定义:对于函数f(x)的定义域内任意一个x,都有f(x)f(x),那么函数f(x)叫做奇函数(2)图象特征:图象关于原点对称3奇偶性的应用中常用到的结论(1)若函数f(x)是定义在R上的奇函数,则必有f(0)0.(2)若奇函数f(x)在a,b上是增函数,且有最大值M,则f(x)在b,a上是增函数,且有最小值M.(3)若偶函数f(x)在(,0)上是减函数,则有f(x)在(0,)上是增函数解决学生疑难点要点一判断函数的奇偶性例1判断下列函数的奇偶性:(1)f(x)2|x|;(2)f(x);(3)f(x);(4)f(x)解(1)函数f(x)的定义域为R,关于原点对称,又f(x)2|x|2|x|f(x),f(x)为偶函数(2)函数f(x)的定义域为1,1,关于原点对称,且f(x)0,又f(x)f(x),f(x)f(x),f(x)既是奇函数又是偶函数(3)函数f(x)的定义域为x|x1,不关于原点对称,f(x)是非奇非偶函数(4)f(x)的定义域是(,0)(0,),关于原点对称当x>0时,x<0,f(x)1(x)1xf(x);当x<0时,x>0,f(x)1(x)1xf(x)综上可知,对于x(,0)(0,),都有f(x)f(x),f(x)为偶函数规律方法判断函数奇偶性的方法:(1)定义法:若函数定义域不关于原点对称,则函数为非奇非偶函数;若函数定义域关于原点对称,则应进一步判断f(x)是否等于±f(x),或判断f(x)±f(x)是否等于0,从而确定奇偶性(2)图象法:若函数图象关于原点对称,则函数为奇函数;若函数图象关于y轴对称,则函数为偶函数(3)分段函数的奇偶性应分段说明f(x)与f(x)的关系,只有当对称区间上的对应关系满足同样的关系时,才能判定函数的奇偶性跟踪演练1(1)下列函数为奇函数的是()Ay|x| By3xCy Dyx214(2)若f(x)ax2bxc(a0)是偶函数,则g(x)ax3bx2cx是()A奇函数 B偶函数C非奇非偶函数 D既是奇函数又是偶函数答案(1)C(2)A解析(1)A、D两项,函数均为偶函数,B项中函数为非奇非偶函数,而C项中函数为奇函数(2)f(x)ax2bxc是偶函数,f(x)f(x),得b0.g(x)ax3cx.g(x)a(x) 3c(x)g(x),g(x)为奇函数要点二利用函数奇偶性研究函数的图象例2已知奇函数f(x)的定义域为5,5,且在区间0,5上的图象如下图所示,则使函数值y<0的x的取值集合为_答案(2,0)(2,5)解析因为函数f(x)是奇函数,所以yf(x)在5,5上的图象关于原点对称由yf(x)在0,5上的图象,可知它在5,0上的图象,如下图所示由图象知,使函数值y<0的x的取值集合为(2,0)(2,5)规律方法给出奇函数或偶函数在y轴一侧的图象,根据奇函数的图象关于原点对称,偶函数的图象关于y轴对称,可以作出函数在y轴另一侧的图象作对称图象时,可以先从点的对称出发,点(x0,y0)关于原点的对称点为(x0,y0),关于y轴的对称点为(x0,y0)跟踪演练2设偶函数f(x)的定义域为5,5,若当x0,5时,f(x)的图象如图所示,则不等式f(x)0的解集是_答案 x|5x2,或2x5解析由于偶函数的图象关于y轴对称,所以可根据对称性确定不等式f(x)0的解当x0,5时,f(x)0的解为2x5,所以当x5,0时,f(x)0的解为5x2.f(x)0的解是5x2或2x5.要点三利用函数的奇偶性求解析式例3已知函数f(x)(xR)是奇函数,且当x0时,f(x)2x1,求函数f(x)的解析式解当x0,x0,f(x)2(x)12x1.又f(x)是奇函数,f(x)f(x),f(x)2x1.又f(x)(xR)是奇函数,f(0)f(0),即f(0)0.所求函数的解析式为f(x)规律方法1.本题易忽视定义域为R的条件,漏掉x0的情形若函数f(x)的定义域内含0且为奇函数,则必有f(0)0.2利用奇偶性求解析式的思路:(1)在待求解析式的区间内设x,则x在已知解析式的区间内;(2)利用已知区间的解析式进行代入;(3)利用f(x)的奇偶性,求待求区间上的解析式跟踪演练3(1)已知函数f(x)是定义在R上的偶函数,x0时,f(x)x22x,则函数f(x)在R上的解析式是()Af(x)x(x2)Bf(x)x(|x|2)Cf(x)|x|(x2)Df(x)|x|(|x|2)(2)已知函数f(x)为奇函数,且当x0时,f(x)x2,则f(1)等于()A2 B0C1 D2答案(1)D(2)A解析(1)f(x)在R上是偶函数,且x0时,f(x)x22x,当x0时,x0,f(x)(x)22xx22x,则f(x)f(x)x22xx(x2)又当x0时,f(x)x22xx(x2),因此f(x)|x|(|x|2)(2)当x0时,f(x)x2,f(1)122.f(x)为奇函数,f(1)f(1)2.1函数f(x)x2(x0)的奇偶性为()A奇函数 B偶函数C既是奇函数又是偶函数 D非奇非偶函数答案D解析函数f(x)x2(x0)的定义域为(,0),不关于原点对称,函数f(x)x2(x0)为非奇非偶函数2下列函数中,既是奇函数又是增函数的为()Ayx1 Byx3Cy Dyx|x|答案D解析由函数的奇偶性排除A,由函数的单调性排除B、C,由yx|x|的图象可知当x>0时此函数为增函数,又该函数为奇函数3函数f(x)是定义在R上的奇函数,当x0时,f(x)x1,则当x0时,f(x)的解析式为()Af(x)x1 Bf(x)x1Cf(x)x1 Df(x)x1答案B解析设x0,则x0.f(x)x1,又函数f(x)是奇函数f(x)f(x)x1,f(x)x1(x0)4已知函数yf(x)为偶函数,其图象与x轴有四个交点,则方程f(x)0的所有实根之和是()A0 B1C2 D4答案A解析由偶函数的图象关于y轴对称,所以偶函数的图象与x轴的交点也关于y轴对称,因此,四个交点中,有两个在x轴的负半轴上,另两个在x轴的正半轴上,所以四个实根的和为0.5若f(x)(xa)(x4)为偶函数,则实数a_.答案4解析由f(x)(xa)(x4)得f(x)x2(a4)x4a,若f(x)为偶函数,则a40,即a4.1.定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的一个条件,f(x)f(x)或f(x)f(x)是定义域上的恒等式2奇偶函数的定义是判断函数奇偶性的主要依据为了便于判断函数的奇偶性,有时需要先将函数进行化简,或应用定义的等价形式:f(x)±f(x)f(x)f(x)0±1(f(x)0)3(1)若f(x)0且f(x)的定义域关于原点对称,则f(x)既是奇函数又是偶函数(2)奇函数在对称的两个区间上有相同的单调性;偶函数在对称的两个区间上有相反的单调性一、基础达标1已知yf(x),x(a,a),F(x)f(x)f(x),则F(x)是()A奇函数B偶函数C既是奇函数又是偶函数D非奇非偶函数答案B解析F(x)f(x)f(x)F(x)又x(a,a)关于原点对称,F(x)是偶函数2设f(x)是定义在R上的奇函数,当x0时,f(x)2x2x,则f(1)等于()A3 B1C1 D3答案A解析f(x)是奇函数,f(1)f(1)3.3若函数f(x)为奇函数,则a等于()A. B. C. D1答案A解析函数f(x)的定义域为x|x,且xa又f(x)为奇函数,定义域应关于原点对称,a.4设偶函数f(x)的定义域为R,当x0,)时,f(x)是增函数,则f(2),f(),f(3)的大小关系是()Af()f(3)f(2)Bf()f(2)f(3)Cf()f(3)f(2)Df()f(2)f(3)答案A解析f(x)是偶函数,则f(2)f(2),f(3)f(3),又当x0时,f(x)是增函数,所以f(2)f(3)f(),从而f(2)f(3)f()5已知f(x)ax2bx是定义在a1,2a上的偶函数,那么ab的值是()A B. C. D答案B解析f(x)ax2bx是定义在a1,2a上的偶函数,f(x)f(x),b0,又a12a,a,ab.6偶函数f(x)在区间0,)上的图象如图,则函数f(x)的增区间为_答案1,0,1,)解析偶函数的图象关于y轴对称,可知函数f(x)的增区间为1,0,1,)7已知f(x)是R上的偶函数,当x(0,)时,f(x)x2x1,求x(,0)时,f(x)的解析式解设x<0,则x>0.f(x)(x)2(x)1.f(x)x2x1.函数f(x)是偶函数,f(x)f(x)f(x)x2x1.当x(,0)时,f(x)x2x1.二、能力提升8已知偶函数f(x)在区间0,)上单调递增,则满足f(2x1)<f的x取值范围是()A. B.C. D.答案A解析由题意得|2x1|<<2x1<<2x<<x<,故选A.9已知f(x)是奇函数,g(x)是偶函数,且f(1)g(1)2,f(1)g(1)4,则g(1)等于()A4 B3 C2 D1答案B解析f(x)是奇函数,f(1)f(1)又g(x)是偶函数,g(1)g(1)f(1)g(1)2,g(1)f(1)2.又f(1)g(1)4,f(1)g(1)4.由,得g(1)3.10.已知定义在R上的奇函数f(x)满足f(x)x22x(x0),若f(3a2)f(2aa2),则实数a的取值范围是_答案(,)解析依题意得,函数f(x)x22x在0,)上是增函数,又因为f(x)是R上的奇函数,所以函数f(x)是R上的增函数,要使f(3a2)f(2aa2),只需3a22aa2.由此解得a,即实数a的取值范围是(,)11设定义在2,2上的奇函数f(x)在区间0,2上单调递减,若f(m)f(m1)0,求实数m的取值范围解由f(m)f(m1)>0,得f(m)>f(m1),即f(1m)<f(m)又f(x)在0,2上为减函数且f(x)在2,2上为奇函数,f(x)在2,2上为减函数,即解得1m<.因此实数m的取值范围是.三、探究与创新12已知f(x)为奇函数,且当x0时,f(x)x23x2.若当x1,3时,f(x)的最大值为m,最小值为n,求mn的值解x0时,f(x)x23x2,且f(x)是奇函数,当x0时,x0,则f(x)x23x2.故当x0时,f(x)f(x)3xx22.当x时,f(x)是增函数;当x时,f(x)是减函数因此当x1,3时,f(x)maxf,f(x)minf(3)2.m,n2,从而mn.13设函数f(x)对任意实数x,y都有f(xy)f(x)f(y),且x0时,f(x)0,f(1)2.(1)求证:f(x)是奇函数;(2)求f(x)在3,3上的最大值与最小值(1)证明令xy0,得f(0)f(0)f(0),f(0)0.又令yx,得f(0)f(x)f(x)0,f(x)f(x),f(x)是奇函数(2)解设x1,x2R,且x1x2,则x2x10,于是f(x2)f(x1)f(x2)f(x1)f(x2x1)0,f(x1)f(x2),f(x)在R上是减函数,f(x)的最大值为f(3)f(3)3f(1)(3)×(2)6,最小值为f(3)f(3)6.下课啦,咱们来听个小故事吧:活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。活动过程: 1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”主持人口述谜语: “双手抓不起,一刀劈不开, 煮饭和洗衣,都要请它来。” 主持人问:“谁知道这是什么?”生答:“水!” 一生戴上水的头饰上场说:“我就是同学们猜到的水。听大家说,我的用处可大了,是真的吗?” 主持人:我宣布:“水”是万物之源主题班会现在开始。 水说:“同学们,你们知道我有多重要吗?”齐答:“知道。” 甲:如果没有水,我们人类就无法生存。 小熊说:我们动物可喜欢你了,没有水我们会死掉的。 花说:我们花草树木更喜欢和你做朋友,没有水,我们早就枯死了,就不能为美化环境做贡献了。 主持人:下面请听快板水的用处真叫大 竹板一敲来说话,水的用处真叫大; 洗衣服,洗碗筷,洗脸洗手又洗脚, 煮饭洗菜又沏茶,生活处处离不开它。 栽小树,种庄稼,农民伯伯把它夸; 鱼儿河马大对虾,日日夜夜不离它; 采煤发电要靠它,京城美化更要它。 主持人:同学们,听完了这个快板,你们说水的用处大不大? 甲说:看了他们的快板表演,我知道日常生活种离不了水。 乙说:看了表演后,我知道水对庄稼、植物是非常重要的。 丙说:我还知道水对美化城市起很大作用。 2.主持人:水有这么多用处,你们该怎样做呢? (1)(生):我要节约用水,保护水源。 (2)(生):我以前把水壶剩的水随便就到掉很不对,以后我一定把喝剩下的水倒在盆里洗手用。 (3)(生):前几天,我看到了学校电视里转播的“水日谈水”的节目,很受教育,同学们看得可认真了,知道了我们北京是个缺水城市,我们再不能浪费水了。 (4)(生):我要用洗脚水冲厕所。 3.主持人:大家谈得都很好,下面谁想出题考考大家,答对了请给点掌声。 (1)(生):小明让爸爸刷车时把水龙头开小点,请回答对不对。 (2)(生):小兰告诉奶奶把洗菜水别到掉,留冲厕所用。 (3)一生跑上说:主持人请把手机借我用用好吗?我想现在就给姥姥打个电话,告诉她做饭时别把淘米水到掉了,用它冲厕所或浇花用。(电话内容略写) (4)一生说:主持人我们想给大家表演一个小品行吗? 主持人:可以,大家欢迎!请看小品这又不是我家的 大概意思是:学校男厕所便池堵了,水龙头又大开,水流满地。学生甲乙丙三人分别上厕所,看见后又皱眉又骂,但都没有关水管,嘴里还念念有词,又说:“反正不是我家的。” 旁白:“那又是谁家的呢?” 主持人:看完这个小品,你们有什么想法吗?谁愿意给大家说说? 甲:刚才三个同学太自私了,公家的水也是大家的,流掉了多可惜,应该把水龙头关上。 乙:上次我去厕所看见水龙头没关就主动关上了。 主持人:我们给他鼓鼓掌,今后你们发现水龙头没关会怎样做呢? 齐:主动关好。 小记者:同学们,你们好!我想打扰一下,听说你们正在开班会,我想采访一下,行吗? 主持人:可以。 小记者:这位同学,你好!通过参加今天的班会你有什么想法,请谈谈好吗? 答:我要做节水的主人,不浪费一滴水。 小记者:请这位同学谈谈好吗? 答:今天参加班会我知道了节约每一滴水要从我们每个人做起。我想把每个厕所都贴上“节约用水”的字条,这样就可以提醒同学们节约用水了。 小记者:你们谈得很好,我的收获也很大。我还有新任务先走了,同学们再见! 水跑上来说:同学们,今天我很高兴,我“水伯伯”今天很开心,你们知道了有了我就有了生命的源泉,请你们今后一定节约用水呀!让人类和动物、植物共存,迎接美好的明天! 主持人:你们还有发言的吗? 答:有。 生:我代表人们谢谢你,水伯伯,节约用水就等于保护我们人类自己。 动物:小熊上场说:我代表动物家族谢谢你了,我们也会保护你的! 花草树木跑上场说:我们也不会忘记你的贡献! 水伯伯:(手舞足蹈地跳起了舞蹈)同学们的笑声不断。 主持人:水伯伯,您这是干什么呢? 水伯伯:因为我太高兴了,今后还请你们多关照我呀! 主持人:水伯伯,请放心,今后我们一定会做得更好!再见! 4.主持人:大家欢迎老师讲话! 同学们,今天我们召开的班会非常生动,非常有意义。水是生命之源,无比珍贵,愿同学们能加倍珍惜它,做到节约一滴水,造福子孙后代。 5.主持人宣布:“水”是万物之源主题班会到此结束。 6.活动效果: 此次活动使学生明白了节约用水的道理,浪费水的现象减少了,宣传节约用水的人增多了,人人争做节水小标兵活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。活动过程: 1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”主持人口述谜语: “双手抓不起,一刀劈不开, 煮饭和洗衣,都要请它来。” 主持人问:“谁知道这是什么?”生答:“水!” 一生戴上水的头饰上场说:“我就是同学们猜到的水。听大家说,我的用处可大了,是真的吗?” 主持人:我宣布:“水”是万物之源主题班会现在开始。 水说:“同学们,你们知道我有多重要吗?”齐答:“知道。” 甲:如果没有水,我们人类就无法生存。 小熊说:我们动物可喜欢你了,没有水我们会死掉的。 花说:我们花草树木更喜欢和你做朋友,没有水,我们早就枯死了,就不能为美化环境做贡献了。 主持人:下面请听快板水的用处真叫大 竹板一敲来说话,水的用处真叫大; 洗衣服,洗碗筷,洗脸洗手又洗脚, 煮饭洗菜又沏茶,生活处处离不开它。 栽小树,种庄稼,农民伯伯把它夸; 鱼儿河马大对虾,日日夜夜不离它; 采煤发电要靠它,京城美化更要它。 主持人:同学们,听完了这个快板,你们说水的用处大不大? 甲说:看了他们的快板表演,我知道日常生活种离不了水。 乙说:看了表演后,我知道水对庄稼、植物是非常重要的。 丙说:我还知道水对美化城市起很大作用。 2.主持人:水有这么多用处,你们该怎样做呢? (1)(生):我要节约用水,保护水源。 (2)(生):我以前把水壶剩的水随便就到掉很不对,以后我一定把喝剩下的水倒在盆里洗手用。 (3)(生):前几天,我看到了学校电视里转播的“水日谈水”的节目,很受教育,同学们看得可认真了,知道了我们北京是个缺水城市,我们再不能浪费水了。 (4)(生):我要用洗脚水冲厕所。 3.主持人:大家谈得都很好,下面谁想出题考考大家,答对了请给点掌声。 (1)(生):小明让爸爸刷车时把水龙头开小点,请回答对不对。 (2)(生):小兰告诉奶奶把洗菜水别到掉,留冲厕所用。 (3)一生跑上说:主持人请把手机借我用用好吗?我想现在就给姥姥打个电话,告诉她做饭时别把淘米水到掉了,用它冲厕所或浇花用。(电话内容略写) (4)一生说:主持人我们想给大家表演一个小品行吗? 主持人:可以,大家欢迎!请看小品这又不是我家的 大概意思是:学校男厕所便池堵了,水龙头又大开,水流满地。学生甲乙丙三人分别上厕所,看见后又皱眉又骂,但都没有关水管,嘴里还念念有词,又说:“反正不是我家的。” 旁白:“那又是谁家的呢?” 主持人:看完这个小品,你们有什么想法吗?谁愿意给大家说说?