欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    《余弦定理》优质课比赛课件.ppt

    • 资源ID:32887693       资源大小:509.50KB        全文页数:16页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《余弦定理》优质课比赛课件.ppt

    复习回顾复习回顾正弦定理:正弦定理: AasinBbsinCcsin=2R(其中(其中2R为为ABC外接圆直径)外接圆直径) 已知两角和一边,求其他角和边. 已知两边和其中一边的对角,求其他角和边.正弦定理能解哪两类三角形呢?正弦定理能解哪两类三角形呢?3km3km6km6km120120)岛屿岛屿B岛屿岛屿A岛屿岛屿C? ?千岛湖千岛湖思考思考:你能求出下图中岛屿你能求出下图中岛屿A A和岛屿和岛屿B B之间的距离吗?之间的距离吗?CBAcab探探 究究: 在在ABCABC中,已知中,已知CB=a,CA=bCB=a,CA=b,CBCB与与CA CA 的夹角为的夹角为CC, 求边求边c.c.cABbCAaCB,设设)()(babaccc2babbaa2Cabbacos222Cabbaccos2222由向量减法的三角形法则得由向量减法的三角形法则得Cbabacos222bacCBAcabAbccbacos2222)()(babaccc2babbaa2Cabbacos222Cabbaccos2222由向量减法的三角形法则得由向量减法的三角形法则得Cbabacos222bac探探 究究: 若若ABCABC为任意三角形,已知角为任意三角形,已知角C C, BC=a,CA=b,BC=a,CA=b,求求AB AB 边边 c.c.cABbCAaCB,设设CBAcabBaccabcos2222余弦定理余弦定理Abccbacos2222)()(babaccc2babbaa2Cabbacos222Cabbaccos2222由向量减法的三角形法则得由向量减法的三角形法则得Cbabacos222探探 究究: 若若ABCABC为任意三角形,已知角为任意三角形,已知角C C, BC=a,CA=b,BC=a,CA=b,求求AB AB 边边 c.c.cABbCAaCB,设设bac余余 弦弦 定定 理理C CB BA Ab ba ac cCabbaccos2222Abccbacos2222Baccabcos2222bcacbA2cos222acbcaB2222cosabcbaC2cos222推论:推论: 利用余弦定理可利用余弦定理可以解决什么类型以解决什么类型的三角形问题?的三角形问题? 角对边的平方等于两边平方的和减去这两边角对边的平方等于两边平方的和减去这两边与它们夹角的余弦的积的两倍。与它们夹角的余弦的积的两倍。3.4km3.4km6km6km120120)A AB BC C 在在ABCABC中,已知中,已知AB=6kmAB=6km,BC=3.4kmBC=3.4km, B=120B=120o o,求,求 ACAC解决实际问题解决实际问题解:由余弦定理得解:由余弦定理得答:岛屿答:岛屿A A与岛屿与岛屿C C的距离为的距离为8.24 km.8.24 km.BBCABBCABACcos222296.67120cos4 . 3624 . 3622o24. 8AC题型一、已知三角形的两边及夹角求解三角形的值和边、求角中,已知、在例aCBAcb,30, 32, 3ABC1Abccbacos2222解:由余弦定理知,3a得由正弦定理BbAasinsin233213sinBsinaAb330cos323232322C CA AB Ba ab bc c60,Bcb90180CBA例例1 1、在、在ABCABC中,已知中,已知a= ,b=2,c= , a= ,b=2,c= , 解三角形解三角形( (依次求解依次求解A A、B B、C).C).解:由余弦定理得解:由余弦定理得22222223161222 231()()cos()bcaAbc 60A45B180180604575CAB631题型二、已知三角函数的三边解三角形22) 13(622) 13()6(2cos222222acbcaB例1、在ABC中,若a=4、b=5、c=6(1)试判断角C是什么角?(2)判断ABC的形状题型三、判断三角形的形状题型三、判断三角形的形状例2、在ABC中,若, 则ABC的形状为()222cba、钝角三角形、直角三角形、锐角三角形、不能确定那 呢?222cba题型三、判断三角形的形状 由推论我们能判断三角形的角的情况吗由推论我们能判断三角形的角的情况吗? ?bcacbA2cos222推论:推论:C CB BA Ab ba ac c提炼:设提炼:设a是最长的边,则是最长的边,则ABC是钝角三角形0222acbABC是锐角三角形0222acbABC是直角三角形0222acb题型三、判断三角形的形状题型三、判断三角形的形状小结小结: :222co s2bcaAb c222cos2cabBca222cos2abcCab 余弦定理可以解决的有关三角形的问题:1 1、已知两边及其夹角,求第三边和其他两个角。、已知两边及其夹角,求第三边和其他两个角。2 2、已知三边求三个角;、已知三边求三个角;3 3、判断三角形的形状、判断三角形的形状Cabbaccos2222Abccbacos2222Baccabcos2222余弦定理:余弦定理:课外作业:课外作业: P10 AP10 A组组 3 3、4 4推论推论: :

    注意事项

    本文(《余弦定理》优质课比赛课件.ppt)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开