2022年小升初衔接数学讲义 .pdf
小升初衔接 专题讲义数学能力就是在练习中成长的汤姆. 杰瑞第一讲数系扩张 -有理数(一)一、 【问题引入与归纳】1、正负数,数轴,相反数,有理数等概念。2、有理数的两种分类:3、有理数的本质定义,能表成mn(0,nm n互质) 。4、性质:顺序性(可比较大小); 四则运算的封闭性( 0 不作除数) ; 稠密性:任意两个有理数间都存在无数个有理数。5、绝对值的意义与性质:(0)|(0)a aaa a 非负性2(|0,0)aa 非负数的性质: i)非负数的和仍为非负数。ii )几个非负数的和为0,则他们都为 0。二、 【典型例题解析】:若|0,ababababab则的值等于多少?如果m是大于 1 的有理数,那么m一定小于它的( D ) A.相反数 B.倒数 C.绝对值 D.平方已 知 两 数a、 b 互 为 相 反 数 ,c、 d 互 为 倒 数 ,x的 绝 对 值 是2 , 求22 0 0 62()()()xabc dxabc d的值。如果在数轴上表示a、b 两上实数点的位置,如下图所示,那么|abab化简的结果等于()A. 2a B.2a C.0 D.2b已知2(3)|2 |0ab,求ba的值是()A.2 B.3 C.9 D.6 有 3 个有理数 a,b,c ,两两不等,那么,ab bc cabc ca ab中有几个负数?设三个互不相等的有理数,既可表示为1,,ab a的形式式,又可表示为0,ba,b 的形式,求20062007ab。三个有理数, ,a b c的积为负数,和为正数,且|abcabbcacXabcabbcac则321axbxcx的值是多少?若, ,a b c为整数,且20072007|1abca,试求|caabbc的值。三、课堂备用练习题。1、计算: 1+2-3-4+5+6-7-8+ +2005+2006 2、计算: 12+23+34+n(n+1) 3、计算:59173365129132481632644、已知,a b为非负整数,且满足|1abab,求,a b的所有可能值。5、若三个有理数, ,a b c满足|1abcabc,求|abcabc的值。例1例2例3例4例5例6例7例8例9精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 15 页小升初衔接 专题讲义数学能力就是在练习中成长的汤姆. 杰瑞第二讲数系扩张 -有理数(二)一、 【能力训练点】:1、绝对值的几何意义| |0 |aa表示数a对应的点到原点的距离。|ab表示数a、b对应的两点间的距离。2、利用绝对值的代数、几何意义化简绝对值。二、 【典型例题解析】 :(1)若20a,化简|2|2 |aa(2)若0 x,化简| 2 |3|xxxx解答:设0a,且|axa,试化简|1|2 |xx解答:a、b 是有理数,下列各式对吗?若不对,应附加什么条件?(1)| |;abab(2)| |;abab(3)| |;abba(4)若|ab则 ab(5)若| |ab,则 ab(6)若 ab,则| |ab解答:若|5 |2 | 7xx,求x的取值范围。解答:不相等的有理数, ,a b c在数轴上的对应点分别为A、B、C,如果| |abbcac,那么 B 点在 A、C 的什么位置?解答:设 abcd ,求|xaxbxcxd的最小值。解答:abcde是一个五位数, abcd ,求|abbccdde的最大值。解答:设1232006,a aaa都是有理数,令1232005()Maaaa2342006()aaaa,1232006()Naaaa2342005()aaaa, 试比较 M 、N的大小。解答:三、 【课堂备用练习题】 :1、已知( )|1|2|3|2002|f xxxxx求( )f x的最小值。2、若|1|ab与2(1)ab互为相反数,求 321ab的值。3、如果0abc,求|abcabc的值。4、x是什么样的有理数时,下列等式成立?(1)|(2)(4) | |2 |4 |xxxx(2)|(76)(35) | (76)(35)xxxx5、化简下式:|xxx例1例2例3例4例5例6例7例8精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 15 页小升初衔接 专题讲义数学能力就是在练习中成长的汤姆. 杰瑞第三讲数系扩张 -有理数(三)一、 【能力训练点】:1、运算的分级与运算顺序;2、有理数的加、减、乘、除及乘方运算的法则。(1)加法法则:同号相加取同号,并把绝对值相加;异号相加取绝对值较大数的符号,并用较大绝对值减较小绝对值;一个数同零相加得原数。(2)减法法则:减去一个数等于加上这个数的相反数。(3)乘法法则:几个有理数相乘,奇负得负,偶负得正,并把绝对值相乘。(4)除法法则:除以一个数,等于乘以这个数的倒数。3、准确运用各种法则及运算顺序解题,养成良好思维习惯及解题习惯。二、 【典型例题解析】 :计算:3510.752( 0.125)124478解答:计算: (1) 、5 60 . 94 . 48 . 1 1(2) 、 (-18.75 )+(+6.25)+(-3.25 )+18.25 (3) 、 (-423)+111362324解答:计算:2323211.75343111142243解答:化简:计算:(1)711145438248(2)35123.7540.1258623(3)340115477(4)235713346(5)-4.035 127.53512-36(7957618)解答:计算: (1)3242311(2)219981110.5333(3)22831210.52552142解答:计算:3413312100.51644解答:计算:3323200213471113()0.25() (51.254)(0.45)(2) ( 1)81634242001解答:例1例2例3例4例5例6例7精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 15 页小升初衔接 专题讲义数学能力就是在练习中成长的汤姆. 杰瑞第四讲数系扩张 -有理数(四)一、 【能力训练点】:1、运算的分级与运算顺序;2、有理数的加、减、乘、除及乘方运算的法则。3、巧算的一般性技巧: 凑整(凑 0) ; 巧用分配律 去、添括号法则; 裂项法4、综合运用有理数的知识解有关问题。二、 【典型例题解析】 :计算:237970.716.62.20.73.31173118解答:计算:1111111111(1)()(1)23199623419972319971111()2341996解答:计算:2232( 2)|3.14| 3.14 |( 1)235324 3 ( 2)( 4)( 1) 7解答:化简:111()(2)(3)(9)1 22 389xyxyxyxy并求当2,x9y时的值。解答:计算:2222222221314112131411nnSn解答:比较1234248162nnnS与 2 的大小。解答:计算:3323200213471113()0.25() (51.254)(0.45)(2) ( 1)81634242001解答:已知a、b 是有理数,且 ab,含23abc,23acx,23cby,请将, , , ,a b c x y按从小到大的顺序排列。解答:三、 【备用练习题】:1、计算( 1)1111142870130208(2)2221 33599 1012、计算:111111200720062005200412323233、计算:1111( 1 )( 1 )( 1 )( 1)23420064、如果2(1)|2| 0ab,求代数式220062005()()2()baababab的值。5、若a、b 互为相反数,c、d 互为倒数,m的绝对值为 2,求2221(1 2)abmmcd的值。例1例2例3例4例5例6例7例8精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 15 页小升初衔接 专题讲义数学能力就是在练习中成长的汤姆. 杰瑞第五讲代数式(一)一、 【能力训练点】:(1)列代数式;(2)代数式的意义;(3)代数式的求值(整体代入法)二、 【典型例题解析】:用代数式表示:(1)比xy与的和的平方小x的数。(2)比ab与的积的 2 倍大 5 的数。(3)甲乙两数平方的和(差) 。(4)甲数与乙数的差的平方。(5)甲、乙两数和的平方与甲乙两数平方和的商。(6)甲、乙两数和的2 倍与甲乙两数积的一半的差。(7)比a的平方的 2 倍小 1 的数。(8)任意一个偶数(奇数)(9)能被 5 整除的数。(10)任意一个三位数。代数式的求值:(1)已知25abab,求代数式2(2)3()2abababab的值。(2)已知225xy的值是 7,求代数式2364xy的值。(3)已知2ab;5ca,求624abcabc的值(0)c(4)已知113ba,求222abababab的值。(5)已知:当1x时,代数式31Pxqx的值为 2007,求当1x时,代数式31Pxqx的值。(6)已知等式(27)(38 )810AB xABx对一切x都成立,求 A、B的值。(7)已知223(1) (1)xxabxcxdx,求 abcd 的值。(8)当多项式210mm时,求多项式3222006mm的值。找规律:. (1)22(12)14(1 1);(2)22(22)24(21)(3)22(32)34(31)(4)22(42)44(41)第 N个式子呢?. 已知2222233;2333388;244441515;若21010aabb(a、b 为正整数),求?ab. 32332333211 ;123 ;1236 ;33332123410 ;猜想:333331234?n例 4 (如右图) 三个圆的面积为 K,两个阴影部分面积相等 , l 以下的面积是 9,三个圆覆盖的面积是2K+2,求 K的值。如果1998abc,则222()()()abbcca等于多少?两个自然数的和与差的乘积是1996,求两数的和?三、 【备用练习题】:1、若()mn个人完成一项工程需要m天,则n个人完成这项工程需要多少天?2、已知代数式2326yy的值为 8,求代数式2312yy的值。3、某同学到集贸市场买苹果,买每千克3 元的苹果用去所带钱数的一半,而余下的钱都买了每千克 2 元的苹果,则该同学所买的苹果的平均价格是每千克多少元?4、已知1111nnaa(1,2,3,2006)n求当11a时,122320062007?a aa aaa例1例2例3例5例6精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 15 页小升初衔接 专题讲义数学能力就是在练习中成长的汤姆. 杰瑞第六讲代数式(二)一、 【能力训练点】:(1)同类项的合并法则;(2)代数式的整体代入求值。二、 【典型例题解析】 :已知多项式222259337yxxyxnxymy经合并后,不含有y 的项,求 2mn的值。解答:当250(23 )ab达到最大值时,求22149ab的值。解答:已知多项式3225aaa与多项式 N的 2 倍之和是324224aaa,求 N?解答:若, ,a b c互异,且xyabbcca,求xyZ的值。解答:已知210mm,求3222005mm的值。解答:已知2215,6mmnmnn,求2232mmnn的值。解答:已知,a b均为正整数,且1ab,求11abab的值。解答:求证200612006211112222个个等于两个连续自然数的积。解答:已知1abc,求111abcababcbacc的值。解答:一堆苹果,若干个人分,每人分4 个,剩下 9 个,若每人分 6 个,最后一个人分到的少于3 个,问多少人分苹果?解答:三、 【备用练习题】:1、已知1ab,比较 M 、N的大小。1111Mab,11abNab。2、已知210 xx,求321xx的值。3、已知xyzKyzxzxy,求 K的值。4、5544333 ,4,5abc,比较, ,a b c的大小。5、已知22350aa,求432412910aaa的值。例1例2例3例4例5例6例7例8例9例1 0精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 15 页小升初衔接 专题讲义数学能力就是在练习中成长的汤姆. 杰瑞第七讲发现规律一、 【问题引入与归纳】我国著名数学家华罗庚先生曾经说过:“先从少数的事例中摸索出规律来,再从理论上来证明这一规律的一般性,这是人们认识客观法则的方法之一” 。这种以退为进,寻找规律的方法,对我们解某些数学问题有重要指导作用,下面举例说明。能力训练点: 观察、分析、猜想、归纳、抽象、验证的思维能力。二、 【典型例题解析】观察算式:(13)2(15)3(17)4(19)513,135,1357,13579,2222按规律填空:1+3+5+99= ?,1+3+5+7+ +(21)n?如图是某同学在沙滩上用石子摆成的小房子。观察图形的变化规律,写出第n个小房子用了多少块石子?用黑、 白两种颜色的正六边形地面砖 (如图所示)的规律,拼成若干个图案: (1)第 3 个图案中有白色地面砖多少块? (2)第n个图案中有白色地面砖多少块?观察下列一组图形,如图,根据其变化规律,可得第10 个图形中三角形的个数为多少?第n个图形中三角形的个数为多少?观察右图,回答下列问题:(1)图中的点被线段隔开分成四层,则第一层有1 个点,第二层有3 个点,第三层有多少个点,第四层有多少个点?(2)如果要你继续画下去,那第五层应该画多少个点,第n 层有多少个点?(3)某一层上有 77 个点,这是第几层?(4)第一层与第二层的和是多少?前三层的和呢?前4 层的和呢?你有没有发现什么规律?根据你的推测,前 12 层的和是多少?读一读:式子“ 1+2+3+4+5+ +100”表示从 1 开始的 100 个连续自然数的和,由于上述式子比较长,书写也不方便, 为了简便起见, 我们可将“1+2+3+4+5+ +100” 表示为1001nn, 这里“”是求和符号,例如 “1+3+5+7+9+ +99”(即从 1 开始的 100 以内的连续奇数的和)可表示为501(21);nn又如“333333333312345678910”可表示为1031nn,同学们,通过以上材料的阅读,请解答下列问题:(1)2+4+6+8+10+ +100(即从2 开始的100 以内的连续偶数的和)用求和符号可表示为;(2)计算:521(1)nn= (填写最后的计算结果) 。观察下列各式,你会发现什么规律?35=15,而 15=42-1 57=35,而 35=62-1 1113=143,而 143=122-1 将你猜想的规律用只含一个字母的式子表示出来。请你从右表归纳出计算13+23+33+n3的分式,并算 出13+23+33+1003的值。例1例2例3例4例5例5例7例8精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 15 页小升初衔接 专题讲义数学能力就是在练习中成长的汤姆. 杰瑞三、 【跟踪训练题】 1 所在学校姓名联系电话1、有一列数1234,na a aaa其中:1a=62+1,2a=63+2,3a=64+3,4a=65+4;则第n个数na= ,当na=2001时,n= 。2、将正偶数按下表排成5 列第 1 列第 2 列第 3 列第 4 列第 5 列第一行2 4 6 8 第二行16 14 12 10 第三行18 20 22 24 28 26 根据上面的规律,则2006 应在行列。3、已知一个数列 2,5,9,14,20,x,35则x的值应为:()4、在以下两个数串中:1,3,5,7,1991,1993,1995,1997,1999和 1,4,7,10, 1990,1993,1996,1999,同时出现在这两个数串中的数的个数共有()个。A.333 B.334 C.335 D.336 5 、 学校阅览室有能坐4人的方桌,如果多于 4 人,就把方桌拼成一行, 2 张方桌拼成一行能坐6 人(如右图所示 )按照这种规定填写下表的空格:拼成一行的桌子数1 2 3 n 人数4 6 6、给出下列算式:487938572835181322222222观察上面的算式,你能发现什么规律,用代数式表示这个规律: 7 、通过计算探索规律: 152=225可写成 1001(1+1)+25 252=625可写成 1002(2+1)+25 352=1225可写成 1003(3+1)+25 452=2025可写成 1004(4+1)+25 752=5625可写成归纳、猜想得:(10n+5)2= 根据猜想计算: 19952= 8 、已知121613212222nnnn,计算:112+122+132+192= ; 9 、从古到今,所有数学家总希望找到一个能表示所有质数的公式,有位学者提出:当n 是自然数时,代数式 n2+n+41所表示的是质数。请验证一下,当n=40时,n2+n+41的值是什么?这位学者结论正确吗? 10 、计算 2008 层35511311111111111精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 15 页小升初衔接 专题讲义数学能力就是在练习中成长的汤姆. 杰瑞第八讲综合练习(一)1、若5xyxy,求552233xyxyxyxy的值。2、已知|9 |xy与2(23)xy互为相反数,求xy。3、已知|2 |20 xx,求x的范围。4、判断代数式|xxx的正负。5、若|1abcdabcd,求|abcdabcd的值。6、若2|2 | (1)0abb,求111(1)(1)(2)(2)ababab1(2007)(2007)ab7、已知23x,化简|2 |3|xx8、已知,a b互为相反数,,c d互为倒数,m的绝对值等于2,P 是数轴上的表示原点的数,求10002abPcdmabcd的值。9、问中应填入什么数时,才能使| 20062006 |200610、, ,a b c在数轴上的位置如图所示,化简:|1|1|23|abbaccb11、若0,0ab,求使| |xaxbab成立的x的取值范围。12、计算:2481632(21)(21)(21)(21)(21)2113、已知200420042004200320032003a,200520052005200420042004b,200620062006200520052005c,求 abc。14、已知9999909911,99Pq,求 P、 q的大小关系。15、 有理数, ,a b c均不为 0, 且0abc。 设| | | |abcxbccaab, 求代数式19992008xx的值。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 15 页小升初衔接 专题讲义数学能力就是在练习中成长的汤姆. 杰瑞第九讲一元一次方程(一)一、知识点归纳:1、等式的性质。2、一元一次方程的定义及求解步骤。3、一元一次方程的解的理解与应用。4、一元一次方程解的情况讨论。二、典型例题解析:解下列方程:(1)2121136xx(2)3 21222 34xx;(3)0.30.21.550.70.20.5xx能否从(2)3axb;得到32bxa,为什么?解答:反之,能否从32bxa得到(2)3axb,为什么?解答:若关于x的方程2236kxmxnk,无论 K 为何值时,它的解总是1x,求m、n的值。解答:若5545410(31)xa xa xa xa。求543210aaaaaa的值。解答:已知1x是方程11322mxx的解,求代数式22007(79)mm的值。解答:关于x的方程(21)6kx的解是正整数,求整数K 的值。解答:若方程732465xxx与方程35512246xxmx同解,求m的值。解答:关于x的一元一次方程22(1)(1)80mxmx求代数式200()(2)mxxmm的值。解答:解方程20061 2233 420062007xxxx解答:已知方程2(1)3(1)xx的解为2a,求方程22(3)3()3xxaa的解。解答:当a满足什么条件时,关于x的方程|2|5 |xxa,有一解;有无数解;无解。解答:例1例2例例4例5例6例7例 8例8例1 0例8例9变形名称具体做法变形依据重点提示去分母方程两边同乘以分母的最小公倍数。等式的同乘性去括号先小再中后大去括号法则,分配律移项把含未知数的项移到方程一边,其他项移到另一边等式的同加性合并同类项把方程化成0axb a合并同类项的法则系数化为1 方程两边同除以a 得到bxa等式的同除性精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 15 页小升初衔接 专题讲义数学能力就是在练习中成长的汤姆. 杰瑞第十讲一元一次方程( 2)一、能力训练点:1、列方程应用题的一般步骤。2、利用一元一次方程解决社会关注的热点问题(如经济问题、利润问题、增长率问题)二、典型例题解析。要配制浓度为 20%的硫酸溶液 100 千克,今有 98%的浓硫酸和 10%的硫酸,问这两种硫酸分别应各取多少千克?解答:一项工程由师傅来做需8 天完成,由徒弟做需16 天完成,现由师徒同时做了4 天,后因师傅有事离开,余下的全由徒弟来做,问徒弟做这项工程共花了几天?解答:某市场鸡蛋买卖按个数计价,一商贩以每个0.24 元购进一批鸡蛋,但在贩运途中不慎碰坏了12 个,剩下的蛋以每个0.28 元售出,结果仍获利11.2元,问该商贩当初买进多少个鸡蛋?解答:某商店将彩电按原价提高40%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍可获利 270 元,那么每台彩电原价是多少?解答:一个三位数,十位上的数比个位上的数大4,个位上的数比百位上的数小2,若将此三位数的个位与百位对调,所得的新数与原数之比为7:4,求原来的三位数?解答:初一年级三个班,完成甲、乙两项任务, (一)班有 45 人, (二)班有 50人, (三)班有 43 人,现因任务的需要,需将(三)班人数分配至(一)、 (二)两个班,且使得分配后(二)班的总人数是(一)班的总人数的2 倍少 36 人,问:应将(三)班各分配多少名学生到(一)、 (二)两班?一个容器内盛满酒精溶液,第一次倒出它的13后,用水加满,第二次倒出它的12后用水加满,这时容器中的酒精浓度为25%,求原来酒精溶液的浓度。某中学组织初一同学春游,如果租用45 座的客车,则有15 个人没有座位;如果租用同数量的 60 座的客车,则除多出一辆外, 其余车恰好坐满, 已知租用 45 座的客车日租金为每辆车250 元,60座的客车日租金为每辆300元,问租用哪种客车更合算?租几辆车?1994 年底,张先生的年龄是其祖母的一半,他们出生的年之和是3838,问到 2006 年底张先生多大?有一满池水,池底有泉总能均匀地向外涌流,已知用24 部 A 型抽水机, 6 天可抽干池水,若用 21 部 A 型抽水机 13 天也可抽干池水, 设每部抽水机单位时间的抽水量相同,要使这一池水永抽不干,则至多只能用多少部A 型抽水机抽水?狗跑 5 步的时间,马能跑6 步,马跑 4 步的距离,狗要跑7 步,现在狗已跑出55 米,马开始追它,问狗再跑多远马可以追到它?一名落水小孩抱着木头在河中漂流,在A 处遇到逆水而上的快艇和轮船,因雾大而未被发现,1 小时快艇和轮船获悉此事,随即掉头追救,求快艇和轮船从获悉到追及小孩各需多少时间?依法纳税是每个公民的义务, 中华人民共和国个人所得税规定,公民每月薪金不超过800元不纳税,超过 800 元的按超过部分的多少分段交税,详细税率如下表:纳税级别全月应纳税金额税率1 不超过 500 元部分%a2 超过 500元未超过 2000元部分10% 3 超过 2000元未超过 5000元部分15% (1)如果某人月收入1250 元,每月纳税 22.5 元,则a值为多少?(2)王老师每月纳税额为45 元,则王老师的月收入是多少元?例1例2例3例4例5例6例7例8例9例 1 0例 1 1例 1 2例1 2精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 15 页小升初衔接 专题讲义数学能力就是在练习中成长的汤姆. 杰瑞第十一讲概率初步一能力训练点(1) 必然事件,不可能事件,不确定事件三个概念的理解与判断;(2) 简单的概率计算;二典型例题解析【例 1】下列事件;(1) 中秋节的晚上一定会看见月亮;(2) 秋天的树叶一定是黄的;(3) 若 a 是有理数,则10a;(4) 今天将有大雨;(5) 随意从扑克牌里抽出一张是黑桃A;(6) 3 个苹果放进 2 个抽屉里有一个抽屉不少于2 个;(7) 掷一枚硬币,正面朝上。其中,必然事件有,不可能事件有,不确定事件有【例 2】下列说法正确吗?请你作处判断,并举例说明。(1) 如果一件事发生的机会只有十万分之一,那么它就不会发生;(2) 如果一件事发生的几率达99 9% ,那么它就必然发生;【例 3】下面第一排表示各布袋中黑棋、白棋的情况,请用第二排的语言来描述摸到白棋的可能性大小,用线连起来。【例 4】判断下列事件出现可能性的大小,并说明理由。(1) 向上抛一枚均匀的硬币,正面朝上和反面朝上的可能性。(2) 任意从一副牌中抽出红A 和抽出黑 A 的可能性。(3) 有两人抽签决定参加比赛,先抽签和后抽签的参加比赛的可能性。(4) 从街对面开过来一辆车,车牌号是奇数和数的可能性。(5) 现有标着 1,2,3,4,100 的卡片,从中任意抽一张,号码是2 的倍数与号码是5的倍数的可能性。【例 5】转动如图所示的转盘,判断下列事件发生的可能性的大小。(1) 指针指到的数字是一个偶数;(2) 指针指到的数字不是3;(3) 指针指到的数字小于6;【例6】甲乙两个同学玩掷硬币游戏,任意掷一枚硬币两次,如果两次朝上的面相同,那么甲获胜;如果两次朝上的面不同,那么乙获胜;这个游戏公平吗?为什么?【例7】两枚硬币,在第一枚正反两面上分别写上1 和 2,在第二枚正反两面上分别写上3 和 4,抛掷这两枚硬币,出现数字之和为5 的机会是多少?【例8】抽屉里有尺码相同的4 双黑袜子和 1 双白袜子混在一起,随意取出2 只。(1) 估计恰好是一双的可能性有多大?(2) 若用小球模拟实验,有一次摸出2 个黑球,但忘记放回,影响结果吗?为什么?【例 9】 (1)设有 12 只形状相同的杯子,其中一等品7 只,二等品 3 只,三等品 2 只,则从中任取 1 只,是二等品的可能性等于()(A)112; (B)16;(C)14; (D)712(2)在一个不透明的袋子中装有除颜色外其余都相同的3 个小球,其中一个红球,两个黄球如果第一次先从袋中摸出一个球后不再放回,第二次再从袋中木摸出一个,那么两次都摸到黄秋的可能性是多少?【例 10】桌子上放着 6 张扑克牌全部正面朝下,你已被告知其中有两张老K 在那个位置,你随便取了两张并把他们翻开并把他们翻开,下面哪一种情况更有可能?(1) 两张牌中至少有一张是老K?(2)两张牌中没有一张是老K?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 15 页小升初衔接 专题讲义数学能力就是在练习中成长的汤姆. 杰瑞第九讲几何初步 (一) 一、知识点归纳:1、掌握直线、射线、线段的性质及表示。2、会用“两点之间线段最短”解决有关最短路径问题。3、掌握角的表示、度量及计算、计数问题。二、典型例题解析:已知:如图,线段AB=CD ,且彼此重合各自的13,M、N分别是 AB 和 CD 的中点,且 MN=14cm,求 AD 的长。【思维延伸】:如图,已知 B、C 是线段 AD 上的两点, M是 AB 的中点, N 是 CD 的中点,若 MN=a,BC=b,求线段AD。解答:如图,两条平行直线m、n 上各有 4 个点和 5 个点,任选 9 个点中的两个连一条直线,则一共可以连多少条直线?思维延伸:平面上有n条直线,每两条都恰好相交,且设有三条直线交于一点,处于这种位置的n条直线交点最多,记为na,且分一个平面所成的区域最多,记为nb,试研究na与n之间的关系,nb与n之间的关系。解答:如图,设 A、B、C、D 为 4 个居民小区,现要在四边形A、B、C、D内建一个购物中心, 试问应把购物中心建在何处, 才能使 4 个居民小区到购物中心的距离之和最小?说明理由。解答:如图,AOOC,DOOB,AOB: BOC=32:13,试求COD的 度数。【思维延伸】:如图,已知A、O、E 三点在一条直线上, OB 平分AOC, AOB+DOE=90,试问:COD 与DOE 之间有怎样的关系?说明理由。解答:7 点到 8 点之间, (1)何时时针与分针垂直?(2)何时时针与分针重合?( 3)何时时分针成一条直线?解答:一副三角板由一个等腰三角形和一个含30角的直角三角形组成,利用这副三角板构成15解的方法很多,请你给出三种方法(写出算式即可)。解答:、都是锐角,甲、乙、丙、丁计算1()6的结果依次为 50, 26,72,90,其中正确的结果是多少?【思维延伸】:若与互补,与互余,且与的和是43个平角,则是的多少倍?解答:现有一个 19的模板,请你设计一种办法,只用这个模板和铅笔在纸上画出1的角来。解答:例1例2例3例4例5例6例7例8精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 15 页小升初衔接 专题讲义数学能力就是在练习中成长的汤姆. 杰瑞第十讲几何初步(二)一、能力训练点1、平行与垂直的定义及有关性质。2、运用平行、垂直的有关性质进行计算作图。二、典型例题解析:已知122334n 1n/,/,/,/llllllll,且每条直线互不重合,那么图中有多少组平行线?解答:如图,在 1010 的长方形格纸上有一等腰梯形ABCD ,请 在 图中画出三条线段,将等腰梯形分成四个面积相等、形状相同的图形。解答:如图所示,表示点到直线线段的距离的线段共有()A、1 条B、2 条C、4 条D、5 条解答:如图,直线 AB、CD 交于 O,OE 平分 AOD,OFOE 于 O,若BOC=80,则 DOF 等于()A、100B、120C、130D、115解答:如图,直线 AB、MN 分别与直线 PQ相交于 O,S,射线 OCPQ 且OC 将BOQ 分成 1:5 两部分,PSN比POB 的 2 倍小 60,求PSN的度数。解答:如图( 1) ,用一块边长为4 的正方形 ABCD厚纸板,按下面做法,做了一套七巧板,作对角线AC,分别取 AB、BC 中点 E、F,连结 DGEF于 G 交 AC 于 H,过 G 作 GL/BC,交 AC 于 L,再由 E 作 EK/DG ,交 AC 于 K,将正方形 ABCD 沿画出的线剪开,现用它拼出一座桥(如图2) ,这座桥的阴影部分的面积是()A、8 B、6 C、5 D、4 解答:右图案中的三个圆的半径都是5cm,三个圆两两相交于圆心,(1)用圆规和直尺按 1:1 画出右国科;(2)求阴影部分的面积。解答:在一副 1919 的围棋盘上共有361 个横线和竖线的交点,现有 两人在每一个交点处轮流依次放上黑白棋子,谁先放下一枚棋子而使对方无处可放,谁就取胜,问题:先放者还是后放者更有希望获胜?解答:用圆规和直尺作出右图所示的图,其中A、B、C、D、E、F 正好把圆分成相等的6 份。(1)图中有互相平行或垂直的线段吗?如果有,请用符中与表示 出来;(2) 图中两个阴影部分面积相等吗?它们的和与长方形ABDE面 积有何关系?你能猜测出来吗?请试一试。解答:过点 O 任意作 7 条直线,求证:以O 为顶点的角中,必有一个小于26解答:例1例2例3例4例5例6例7例8例9例 1 0精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 14 页,共 15 页小升初衔接 专题讲义数学能力就是在练习中成长的汤姆. 杰瑞第十三讲生活中的数据一能力训练点1科学记数法; 2统记图表及有关计算;二典型例题解析【例 1】2003 年 6 月 1 日 9 时,举世瞩目的三峡工程正式下闸蓄水,首批机组率先发电,预计年内可发电 5500 000 000 度,这个数用科学记数法记为多少度?解答:【例 2】近似数 0。30精确到哪一位?有多少个有效数字?其真实值在什么范围?解答:【例 3】假如我们的计算机每秒能分析出10 亿种可能 性,那么一台计算机一个世纪能分析多少种可能性?与1910比较,哪个更大?(一年365天,一天 24 小时)解答:【例 4】40200000 2000 可改写为7344 02 10(2 10 )2 01 10,仿照上面改写方法你再亲自 试三 个 , 你 发 现mn(10(10 )ab)的算法有什么规律吗?请你 用发 现 的 规律 直接 计算 :(927 392102 1 10410)()(2)解答:【例 5】地球的表面积为511000000 平方千米,而海洋占了它的70100,请你计算一下,海洋面积有多大?解答:【例 6】按照下面给出的数据,完成扇形统计图。地球上的生物细胞其近似 元素组成大约是:氧60100,碳20100,氢10100,其它10100。解答:【例 7】某地为了改善居民住房条件, 每年都新建一批住房,该地区 1997年1999 年,每年年底人口总数和人均住房面积的统计结果如图6-2-8 所示,拒此回答下列问题:该区1998 年和 1999 年两年中,哪一年比上一年增加的住房面积多?多多少?解答:【例 8】在 2002 年韩国釜山亚运会上,中国以150枚金牌继续在亚洲处于 “体育大国” 的领先地位,上表为金派半榜:制作适当的统计图表示以上数据。解答:【例 9】为了从甲乙两名学生中选拔一名学生参加今年六月的全市中小学生实验操作竞赛,每个月对他门的操作水平进行一次测验,前五次成绩如图:(1) 分别求出甲乙两名学生5 次策验成绩的平均数;(2) 如果你是他门的辅导老师,应选派哪名学生参加竞赛,并说明理由。解答:【例 10】如下图将一张正方形纸片剪成四个大小一样的小正方形,然后将其中一个小正方形再按同样的方法剪成四个小正方形,依此类推,(1) 填表;(2) 如果剪 100 次,可剪成多少个正方形?如果剪n 次,可剪成多少个正方形?解答:【例 11】每年 6 月 5,日是“世界环境日”,下表是我国近几年来废气污染物排放量统,请认真阅读该表后回答问题。(1) 请用不同的虚实点虚线画出: 二氧化硫排放量, 烟尘排放量和工业粉尘排放量的折线走势图。(2) 2002 年想对于 1998年,全国二氧化硫排放量,烟尘排放量和工业粉尘排放量的增减率别为,和。 (精确到一个百分点)(3) 简要评价这三种废气污染物排放量的走势。(简要说明:总趋势,增减的相对快慢)第名次国家金牌银牌铜牌1 中国150 84 74 2 韩国96 80 84 3 日本44 73 73 4 哈萨克斯坦20 26 30 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 15 页,共 15 页