2022年高中物理教学论文-对振动与波动教学的比较 .pdf
-
资源ID:33355665
资源大小:74.25KB
全文页数:7页
- 资源格式: PDF
下载积分:4.3金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年高中物理教学论文-对振动与波动教学的比较 .pdf
1 对振动与波动教学的比较摘要:对振动与波动教学的比较, 在教学过程中以突出培养学生重新组合已有的知识组块去解决新的物理问题的能力。关键词:重新组合已有知识组块探究迁移拓展重组。振动与波动是物理学最重要的部分之一,它越来越广泛地应用于理论研究、机械设计和科学技术各方面。 振动与波动虽是物理学中最重要的部分之一,但在中学物理教学中,由于学时数的限制以及数学知识的不足,一直都没被作为重点。振动和波动中的很多重要内容,如:受迫振动、共振、振动的合成与分解、波的干预和衍射, 基本上只限于定性的讨论或描述。在普通物理学中, 对振动与波动基本上有了完整的描述。 根据振动与波动的知识特点, 再结合物理教学任务, 通过振动与波动教学可以更进一步培养学生重新组合已有的知识组块去解决新的物理问题的能力。因此,在振动与波动教学中,应该充分表达这一点。1 振动与波动的知识结构的比较对振动与波动知识结构的了解,有利于教学重难点的突破,有利于教学方法的选择。因此,把振动与波动的知识结构列入教学比较中也是合理的。振动与波动的主要内容模块定义及方程特征参量 A、 T、 A等同频率的合成同方向简谐振动合成不同频率的合成简谐振动拍同频率的合成互相垂直简谐振动合成不同频率的合成能量阻尼振动的运动方程阻尼振动阻尼振动的三种运动形式弱阻尼、过阻尼、临界阻尼运动品质因数受迫振动方程受迫振动稳定状态的振动振动的概述精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 7 页2 共振周期性振动的频谱分析振动的分解非周期性振动的频谱分析无阻尼自由振荡电磁振荡阻尼振荡受迫振荡力电类比波的类型描述简谐波的物理量、T、 、u等简谐波波速平面简谐波的表达式球面简谐波的表达式波的能量波动方程波的反射波的折射波的一些传播规律波的散射波的衍射波的频散、群速度波的衰减波的叠加原理波的叠加波的干预驻波驻波的形成、特点、相位跃变机械波的多普勒效应多普勒效应电磁波的多普勒效应冲击波声速、声压声强、声强级声波声波的反射和折射的强度音乐与噪声超声波和次声波电磁波的波动方程电磁波的性质电磁波的能量电磁波电磁波的动量电磁波的辐射电磁波的反射和折射电磁波谱波动的概述精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 7 页3 振动与波动知识结构的比较自然界中常有一些物体在它们的平衡位置附近往返运动,即为振动。 对于电量、电压、电流、电场强度和磁感应强度等物理量,当它们围绕一定的 “平衡值”作周期性的变化时,也称为该物理量的振动或振荡。振动便从可模型化为质点的物体的周期性运动开始,最简单、最基本的振动形式是简谐振动,任何复杂的振动都可以看作是一系列不同频率、不同振幅的简谐振动的迭加。而波动是振动状态的传播,广义地讲,偏离平衡状态的某种随时间变化的扰动在空间的传播都称为波动。假设波源作简谐振动,且波所到之处,介质中各质点均作同频率,同振幅的简谐振动,这样的波称为简谐波。简谐波是最简单的也是最基本的波型、任何复杂的波都可以看成是许多不同频率的简谐波迭加而成的。 基于这一点, 振动与波动分别从简谐振动和简谐波入手,逐步深入的讲解,这也是振动与波动知识结构的共同点之一。物理理论体系的建立,总离不开物理规律的定量化,同样,振动与波动理论体系的完备,也需要充分的数学知识。振动也离不开对振动的运动方程的讨论。质点在线性恢复力作用下的振动是最简单最基本的形式,因此放在“螺旋式” 知识结构的最底端。在此基础上又分别讨论了有阻力及阻力和周期性驱动力共同作用下的振动方程, 从而解释了许多与振动相关的物理现象。波动的知识框架也由波动方程的引入而使其理论更加完备。波动方程结合相关边值关系, 再利用数学知识可以定量推导出波的一些传播规律。利用方程进一步对振动与波动的定量分析又是这两个知识体系的共同特点之一。振动的合成以同方向和垂直方向的简谐振动为基础作了详述,而振动的分解却培养了学生利用傅里叶级数和傅里叶积分理论的能力。这样就要求学生学会重新组合已有的知识组块去解决新的物理问题。波的叠加也与之照应。以力电类比进入电磁振荡的知识框架是显而易见的,对电磁振荡方程的讨论,并与机械振动对应、 类比,就可以利用电学和电子仪器把复杂的机械振动问题化成交变电路问题, 然后通过计算或实验测定, 找到它们的解。 电磁波由解电磁波的波动方程入手,分析、讨论、总结归纳得出电磁波的性质、能量、动量、辐射、反射和折射等规律。 这些又为无线电的应用奠定了一定的基础。可以通过这些知识框架构建的重现,完成对学生知识的迁移、拓展与重组的培养。波动理论中的声波也是最常见的一种由机械振动引起的纵波与横波的迭加,对它的讲述也是必要的,因为它与我们的生活息息相关,也很有科学探研价值。波动理论中假设不阐述多普勒效应,是不可思议的。波动理论中分别对机械波的多普勒效应和电磁波的多普勒效应作了详述,并且多普勒效应已经广泛地应用于许多领域。 在多普勒效应中对冲击波的探究,已经由切伦科夫辐射原理制成的测定高能粒子探测器而广泛应用于高能物理学。在振动和波动中都涉及到,也必须涉及到能量问题,振动和波动能量的对应却与它们的运动方程及其特性不可分。振动与波动知识结构除了有许多共同点之外,却还有本质的区别。这些异同都将在教学中一一表达。2 振动与波动教学重难点的比较对振动与波动教学重、难点的分析,有利于教学方法的选取。由振动与波动的知识结构可以看出:简谐振动与简谐波作为基础性的教学重精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 7 页4 点;振动方程和波动方程将作为这两大理论体系的重点和难点;振动与波的能量计算又是一大重点和难点。2.1 简谐振动与简谐波的教学重、难点比较简谐振动作为振动的“螺旋式”知识结构的基础,这部分知识掌握的好坏直接影响着对后面内容的学习。简谐振动分别从动力学和运动学两方面给了定义,这两个定义的等价性是不言而喻的。正是运动学方程的得出, 而引进了简谐振动的特征参量 A, , T或, ,A等 。对它们的讨论以加深学生对最基本的振动形式的了解和掌握。重点对振幅A和相位或相位差的讨论,其意图是为振动的合成与分解, 以及波的叠加打下基础。 对初学者而言, 相位差的讨论又算是个难点。 简谐振动的能量计算可以算个基础性的重点,他为振动的分析和应用提供了定量化依据的一个方面。 x-t 图及矢量图示法 , 为分析振动提供了一种方法和手段。在 x-t 图和矢量图示法的教学中,学生已有的知识组块得到激活,为知识组块的自觉性重组创造可能性条件。简谐波,在已有的简谐振动特征参量的基础上又引入了新的特征参量,u, 。在波动教学中带领学生对空间周期性波长,波速或相速 u及角波数k的探究也很必要,因为它们在波动方程或振动方程的解中,充当着重要角色。 简谐波中重点讨论了平面简谐波的表达式。作为平面简谐波的波动方程的解,与简谐振动方程的解 即简谐振动的运动学表达式可相互推导, 在推导过程中也充分表达了简谐振动与平面简谐波的区别和联系。球面简谐波的表式将简谐波的波动方程的解向一般化推进了一步,在教学中也要作为一大表达。 波的能量作为重、难点,是因为它除了涉及到质元的振动的动能和弹性势能、质元的总能量的计算、应用外,还进一步讨论了更为一般的能量密度、平均能量密度,以及更具普遍意义的波强。简谐波中某个质元对能量的吸收与释放区别着简谐振动中质点振动的能量有守恒的趋势。简谐波中也利用了t 图对波的描述,它与振动中xt 图有着本质的区别: t 图中还存在一个待定变量x。但 t 与xt 图也有着惊人的相似:它们都是余正弦函数图或可分解为余正弦函数图。2.2 振动与波动方程在分析了最基本的简谐振动与波动后,寻找一个更为一般的运动方程是势在必行。从简谐振动的动力学方程和运动学方程启发学生分析、类比,论证更为一般的基础性一维振动方程: d 2x/dt 2+ 2dx/dt + 0 x = F/m 1对、F的取值讨论,并求解此方程,再对方程的解分析、讨论,可以完成对阻尼振动与受迫振动的分析,从而重现了简谐振动是=0,F=0的特例。这一切都培养了学生重新组合已有的知识组块去解决新的物理问题的能力。对波动方程的寻求,显示了数理方法的重要性,更要求学生对已有知识组块的迁移、拓展与重组, 对于在空间传播的一切波动过程,只要介质是均匀的和各向同性的,而且无衰减,也无频散,其波动方程可表示为:tt u2 =0 = ? 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 7 页5 2对此波动方程的具体求解, 是难点。但他让学生玩味了更一般的波动规律,学生由它对波的一些传播规律的定量论证,激发了学生探究物理规律的兴趣。振动与波动中还有许多重要内容而且不可或缺,为什么没有作为重难点而一一提出呢?原因在于:要学好物理,学生必须具有重新组合已有知识块去提出、解决新的物理问题的能力, 简谐振动与简谐波, 振动方程与波动方程作为重难点进行讲述之后,振动与波动的其它重要的内容正是培养学生重新组合已有知识组块去提出、解决新的物理问题的能力, 这些重要的内容可让学生在已有物理环境中探究。力学中对机械振动与机械波的充分讨论,有助于激活学生对非机械振动的探求,进而完成电磁振荡与电磁波的学习。3 振动与波动教学方法的比较在教学重难点分析中,也部分地涉及到了教学方法。下面将对振动与波动的主要教学方法进行总结并举例。简谐振动与简谐波主要采用数学演绎,类比,启发式综合教学法;而振动方程与波动方程主要采取逻辑法 包括比较,归纳、演绎、分析、综合等 , 综合引探法,数学演绎及有序启动式教学方法。3.1 简谐振动中知识迁移、拓展及重组的例子。在分析简谐振动方程之后,进而讨论了简谐振动的特征参量。下面对矢量图示法进行知识迁移、拓展及重组举一例子。讨论:匀速圆周运动的直径分运动是简谐振动。质点作如下图的匀速圆周运动, 圆半径设为 A, 相对圆心的旋转矢径可记为A,旋转角速度设为,质点质量为m , t 时刻质点的向心力便是Fn= - m 2A 3在沿某直径的 x轴方向上的分力为 Fx=Fni= -m 2Ai 4式中 i 是x轴方向矢量。因A i= x 5其中 x 即为t 时刻质点的 x坐标。所以 Fx= - kx (k=m2) 6a可见,匀速圆周运动的质点在任一直径的方向上所受的力都是线性恢复力,因此在该方向上的运动必定是简谐振动。又= an= 2A 7则可导出精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 7 页6 x= Ai= A cos ( t+) 8 vx=v i = - sin( t+) 9 ax=ani = - 2 A cos( t+) = - 2x 10据此可理解:假设质点 x方向上受力Fx= - kx (k0) 6b则 它 在 x 方 向 上 所 作 的 简 谐 振 动 必 如 导 出 式 所 示 , 其 中 振 动 角 频 率 为=(k/m)1/2 , 线量 x 的简谐振动中, 式(10) 与 式(6a)是等价的,因为结合牛顿第二定律可由 式(10) 导得 式(6a) 。于是可以说, 假设质点在线振动方向的加速度ax 与 线振动量 x 之间的关系为ax= - 2x (11) 则对应的必定是以为角频率的简谐振动。引伸到角振动量,假设角加速度与角间的关系为 =- 2 (12) 则对应的也定是以为角频率的简谐振动,即必有= 0cos (t+) (13) = d/dt = - 0sin( t+)(14) = d/dt= - 2 0cos (t+ ) =- 2 (15) 对这个例子的讲述,充分表达了对学生已有知识组块重组的要求。举一简谐波的知识重组的例子已知的空气中一平面简谐余弦波的振源O距一固定反射面 B的距离 L=3m , 该波振 幅 A=0.05m, 圆频率 =2 rad/s,向反射面的传播速度 v=3m/s 试求: . 反射波的表达式 ; . 空间某点 P(在OB 之间) 的合成波的表达式 ; . 在距波源为 1m 处C点的振动规律 . 此题在教学过程中 , 不但发散了学生的思维 , 培养了学生论证问题的全面性, 而且也在启发中培养了学生对已有知识组块重组的能力。如对入射波的波动方程, 反射波的振动方程及波动方程的求解,合成波的波动方程及C点的振动方程的定解问题。对振动方程与波动方程的分析,讨论,充分表达了多重知识的应用,这也正是教学中应充分注重的已有知识组块重组的表现。这方面的例子很多在此不作一一列举。另外,多普勒效应, 不但重组了机械振动, 机械波与相对性原理的知识组块,而且重组了狭义相对论, 电磁振荡与电磁波的知识组块。又在教学中给学生以能力的培养。事实早已证明,物理学的发展要求物理学家们不断重组已有知识组块去提出、解决新的物理问题,从而又进一步推动了物理学的发展。因此,在振动与波动教学比较中,应该充分意识到培养学生重新组合已有的精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 7 页7 知识组块去解决新的物理问题的能力的重要性;而不是让学生在 “题海战术” 中熟练已有的知识,把知识学死。参考文献 :1 梁昆淼,数学物理方法第三版 M ,北京:高等教育出版社,1998年。2 赵凯华,罗蔚茵力学 第三版 M ,北京: 高等教育出版社, 1996年。3 郭硕鸿,电动力学第二版 M ,北京:高等教育出版社, 1997年。4 梁树森, 物理学习方法论 “九五”重点理论成果,广西教育出版社, 1996年。5 鲁桂生,大学物理复习指导双博士科研组,海洋出版社, 1997年。6 胡盘新,大学物理手册第一版,上海交通大学出版社,1999年。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 7 页