欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年数学物理方法复习资料 .pdf

    • 资源ID:33363633       资源大小:95.47KB        全文页数:4页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年数学物理方法复习资料 .pdf

    读书之法 ,在循序而渐进 ,熟读而精思复变函数期末复习提要第 7章:残数及其应用理解残数的定义;熟练掌握计算残数的方法;理解残数基本定理,熟练掌握用残数理论计算积分。定义 7. 1 设)(a为函数)(zf的孤立奇点,c为圆周:az,若)(zf在az0上解析,则称czzf)d(i21为)(zf在点a的残数(或留数),记作),(Resaf或)(Res a,即czzfaf)d(i21),(Res(7. 1)例 1 设)1(25)(zzzzf,求)0,(Res f解法 1 由( 7. 1)式得41d) 1(25i21)0,(Reszzzzzf41dz125i21zzzz0)125(zzz2注意:这里的积分路径的半径并非只能取41,只须使半径小于1 即可满足定义7. 1 的条件解法 2 因点0z为)(zf的孤立奇点,所以,在310:)31,0(*zN内有zzzzf1)1(25)(0)52(nnzz032nnzz由此得21c,依( 7. 2)式得2)0,(Res f解法 3 因点0z为)(zf的一级极点,所以,依(7. 3)式得)1(25lim)0,(Res0zzzzfz精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 4 页读书之法 ,在循序而渐进 ,熟读而精思2解法 4 因点0z为)1(25)(zzzzf的一级极点,所以,由(7. 4)式得0 )1(25)0,(Reszzzzf2定义 7. 2设z为函数)(zf的孤立奇点,c为圆周:z,若)(zf在zR内解析)(R,则称czzf)d(i21为函数)(zf在点z的残数(或留数),记作),(Res f或)(Res,即czzff)d(i21),(Res(7. 6)例 2 设zzzfe)1()(2,求),(Res f解取圆周2: zc,由( 7. 6)式得czzzfde1i21),(Res2czzzde1i2120定理 7. 1 设区域G是由围线c的内部构成(如图),若函数)(zf在G内除含有限个奇点naaa,21外解析,且在cGG上除点naaa,21外连续,则njjcafzzf1),(R esi2)d((7. 8)例 3计算积分1,d12i212azazzz解首先, 弄清被积函数在积分路径内部有无奇点由122azz求出被积函数的奇点有121aaz与122aaz因1a,所以,12z,又因121zz,故11z,即在积分路径内部只有被积函数的a1 ?c1 a2 ?c2 a3 ?c3 an?cnGc精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 4 页读书之法 ,在循序而渐进 ,熟读而精思一个奇点1z其次,经检验,由(7. 8)式得),12i2(Resi2d12i21212zazzzazzz)(i2)(limi22111zzzzzzzz122a残数在计算某些实积分上的应用njjzzQzPxxQxP1),)()(Resi2d)()((7. 10)例 4 计算积分xxxxd1242解经验证,此积分可用(7. 10)式计算首先,求出1)()(242zzzzQzP在上半平面的全部奇点令0124zz即22424) 12(1zzzzz222)1(zz) 1)(1(22zzzz0于是,)()(zQzP在上半平面的全部奇点只有两个:i2321与i2321且知道,与均为)()(zQzP的一级极点其次,算残数,有)()()()(lim),)()(Res2zzzzzzzQzPzi34i31)()()()(lim),)()(Res2zzzzzzzQzPzi34i31最后,将所得残数代入(7. 10)式得精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 4 页读书之法 ,在循序而渐进 ,熟读而精思),)()(Res),)()(Res i2d1242zQzPzQzPxxxx3njjzkxkzzQzPxxQxP1ii),e)()(R esi2de)()(7. 11) 例 5 计算积分0,de22iaxaxx解 经验证,该积分可用(7. 11)式计算首先,求出辅助函数22ie)(azzfz在上半平面的全部奇点由022az解得iaz与iaz为)(zf的奇点,而0a,所以,)(zf在上半平面只有一个奇点ia, 且ia为)(zf的一级极点其次,计算残数有) i)(i(e) i(lim) i,e(Resii22iazazazaazzazzi2eaa最后,由( 7. 11)式得) i,e(Resi2de22i22iaazxaxzxaae基于例 7. 12,由( 7. 12)与( 7. 13)式容易得到aaxaxxedcos22与0dsin22xaxxttttttxxxd12)12,11(Rad)sin,(cosRa222220精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 4 页

    注意事项

    本文(2022年数学物理方法复习资料 .pdf)为本站会员(C****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开