欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年《推理与证明》知识点,推荐文档 .pdf

    • 资源ID:33392346       资源大小:97.44KB        全文页数:5页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年《推理与证明》知识点,推荐文档 .pdf

    推理与证明一、推理1. 推理:前提、结论2. 合情推理 : 合情推理可分为归纳推理 和类比推理 两类:(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特征的推理,或者由个别事实概括出一般结论的推理。简言之,归纳推理是由部分到整体、由个别到一般的推理. (2)类比推理:由两类对象具有某些类似特征和其中一类对象具有的某些已知特征,推出另一类对象也具有这些特征的推理,简言之,类比推理是由特殊到特殊的推理. 3. 演绎推理 : 从一般性的原理出发,推出某个特殊情况下的结论的推理叫演绎推理 ,简言之,演绎推理是由一般到特殊的推理。重难点:利用合情推理的原理提出猜想,利用演绎推理的形式进行证明题型 1 用归纳推理发现规律1、观察:7152 11;5.516.52 11;331932 11; . 对于任意正实数,a b,试写出使2 11ab成立的一个条件可以是 _. 点拨:前面所列式子的共同特征特征是被开方数之和为22,故22ba2、蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图 . 其中第一个图有1 个蜂巢,第二个图推理与证明推理证明合情推理演绎推理直接证明数学归纳法间接证明比较法类比推理归纳推理分析法综合法反证法知识结构名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 5 页 - - - - - - - - - 有 7 个蜂巢,第三个图有19 个蜂巢,按此规律,以( )f n表示第n幅图的蜂巢总数.则(4)f=_;( )f n=_. 【解题思路】找出)1()(nfnf的关系式解析 ,1261)3(,61)2(, 1) 1(fff37181261)4(f133)1(6181261)(2nnnnf【名师指引】处理“递推型”问题的方法之一是寻找相邻两组数据的关系题型 2 用类比推理猜想新的命题例已知正三角形内切圆的半径是高的13,把这个结论推广到空间正四面体,类似的结论是_. 【解题思路】从方法的类比入手解析 原问题的解法为等面积法,即hrarahS3121321,类比问题的解法应为等体积法,hrSrShV4131431即正四面体的内切球的半径是高41【名师指引】(1)不仅要注意形式的类比,还要注意方法的类比(2)类比推理常见的情形有:平面向空间类比;低维向高维类比;等差数列与等比数列类比;实数集的性质向复数集的性质类比;圆锥曲线间的类比等二、直接证明与间接证明三种证明方法 : 综合法、分析法、反证法反证法:它是一种间接的证明方法. 用这种方法证明一个命题的一般步骤:(1) 假设命题的结论不成立;(2) 根据假设进行推理, 直到推理中导出矛盾为止(3) 断言假设不成立(4) 肯定原命题的结论成立重难点:在函数、三角变换、不等式、立体几何、解析几何等不同的数学问题中,选择好证明方法并运用三种证明方法分析问题或证明数学命题考点 1 综合法在锐角三角形ABC中, 求证:CBACBAcoscoscossinsinsin解析 ABC为锐角三角形,BABA22,xysin在)2,0(上是增函数,BBAcos)2sin(sin同理可得CBcossin,ACcossinCBACBAcoscoscossinsinsin考点 2 分析法名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 5 页 - - - - - - - - - 已知0ba, 求证baba解析 要证baba,只需证22)()(baba即baabba2,只需证abb,即证ab显然ab成立,因此baba成立【名师指引】注意分析法的“格式”是“要证-只需证 - ” ,而不是“因为- 所以 - ”考点 3 反证法已知)1(12)(axxaxfx,证明方程0)(xf没有负数根【解题思路】“正难则反”,选择反证法,因涉及方程的根,可从范围方面寻找矛盾解析 假设0 x是0)(xf的负数根,则00 x且10 x且12000 xxax112010000 xxax,解得2210 x,这与00 x矛盾,故方程0)(xf没有负数根【名师指引】否定性命题从正面突破往往比较困难,故用反证法比较多三、数学归纳法一般地 , 当要证明一个命题对于不小于某正整数N的所有正整数n 都成立时 ,可以用以下两个步骤: (1) 证明当 n=n0时命题成立 ; (2) 假设当 n=k(?+,且? ?0)时命题成立 ,证明 n=k+1 时命题也成立. 在完成了这两个步骤后, 就可以断定命题对于不小于n0的所有正整数都成立. 这种证明方法称为数学归纳法. 考点 1 数学归纳法题型:对数学归纳法的两个步骤的认识例 1 已知 n 是正偶数,用数学归纳法证明时,若已假设n=k(2k且为偶数)时命题为真,则还需证明()A.n=k+1 时命题成立 B. n=k+2时命题成立 C. n=2k+2时命题成立 D. n=2(k+2)时命题成立解析 因 n 是正偶数,故只需证等式对所有偶数都成立,因k 的下一个偶数是k+2,故选 B 【名师指引】用数学归纳法证明时,要注意观察几个方面:(1)n 的范围以及递推的起点(2)观察首末两项的次数(或其它) ,确定 n=k 时命题的形式)(kf(3)从)1(kf和)(kf的差异,寻找由k 到 k+1 递推中,左边要加(乘)上的式子考点 2 数学归纳法的应用名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 5 页 - - - - - - - - - 题型 1:用数学归纳法证明数学命题用数学归纳法证明不等式2) 1(21) 1(3221nnn解析 ( 1)当 n=1 时,左 = 2,右 =2,不等式成立(2)假设当n=k 时等式成立,即2)1(21) 1(3221kkk则)2)(1() 1(21)2)(1()1(32212kkkkkkk02)2()1()2)(1(2)2()2)(1()1(2122kkkkkkkk2 1)1(21)2)(1() 1(3221kkkkk当 n=k+1 时, 不等式也成立综合( 1) (2) ,等式对所有正整数都成立【名师指引】(1)数学归纳法证明命题,格式严谨,必须严格按步骤进行;(2)归纳递推是证明的难点,应看准“目标”进行变形;(3)由 k 推导到 k+1 时,有时可以“套” 用其它证明方法,如:比较法、分析法等, 表现出数学归纳法“灵活”的一面名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 5 页 - - - - - - - - - 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 5 页 - - - - - - - - -

    注意事项

    本文(2022年《推理与证明》知识点,推荐文档 .pdf)为本站会员(C****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开