《电路及磁路dl》PPT课件.ppt
含有动态元件电容和电感的电路称动态电路。含有动态元件电容和电感的电路称动态电路。特点:特点:1. 动态电路动态电路 6.1 6.1 动态电路的方程及其初始条件动态电路的方程及其初始条件 当动态电路状态发生改变时(换路)需要经当动态电路状态发生改变时(换路)需要经历一个变化过程才能达到新的稳定状态。这个变历一个变化过程才能达到新的稳定状态。这个变化过程称为电路的过渡过程。化过程称为电路的过渡过程。例例+-usR1R2(t=0)i0ti2/ RUiS )(21RRUiS 过渡期为零过渡期为零电阻电路电阻电路K未动作前,电路处于稳定状态未动作前,电路处于稳定状态i = 0 , uC = 0i = 0 , uC= UsK+uCUsRCi (t = 0)K接通电源后很长时间,电容充电接通电源后很长时间,电容充电完毕,电路达到新的稳定状态完毕,电路达到新的稳定状态+uCUsRCi (t )前一个稳定状态前一个稳定状态过渡状态过渡状态新的稳定状态新的稳定状态t1USuct0?iRUS有一过渡期有一过渡期电容电路电容电路K未动作前,电路处于稳定状态未动作前,电路处于稳定状态i = 0 , uC = 0i = 0 , uC= UsK动作后很长时间,电容放电完毕,动作后很长时间,电容放电完毕,电路达到新的稳定状态电路达到新的稳定状态前一个稳定状态前一个稳定状态过渡状态过渡状态第二个稳定状态第二个稳定状态t1USuct0iRUS有一过渡期有一过渡期第三个稳定状态第三个稳定状态+uCUsRCi (t 0等效电路等效电路0 0 teUuRCtcsRCVU 2045 24 0 代代入入0 2420 tVeutc分流得:分流得:AeuitC20 164 Aeiit20 12432 Aeiit20 13231 2.2. RL电路的零输入响应电路的零输入响应特征方程特征方程 Lp+R=0LRp 特征根特征根 代入初始值代入初始值 i(0+)= I0A= i(0+)= I001)0()0(IRRUiiSLL 00dd tRitiLiK(t=0)USL+uLRR1ptAeti )(0)(00 teIeItitLRpt得得t 0iL+uLRRLtLLeRIdtdiLtu/ 0)( 0)(/ 0 teItiRLtL-RI0uLttI0iL0从以上式子可以得出:从以上式子可以得出:连续连续函数函数跃变跃变 (1 1)电压、电流是随时间按同一指数规律衰减的函数;)电压、电流是随时间按同一指数规律衰减的函数; (2 2)响应与初始状态成线性关系,其衰减快慢与)响应与初始状态成线性关系,其衰减快慢与L/R有关;有关;令令 = L/R , , 称为一阶称为一阶RL电路时间常数电路时间常数L大大 W=Li2/2 起始能量大起始能量大R小小 P=Ri2 2 放电过程消耗能量小放电过程消耗能量小放电慢放电慢 大大 秒秒欧欧安安秒秒伏伏欧欧安安韦韦欧欧亨亨 RL 大大 过渡过程时间长过渡过程时间长 小小 过渡过程时间短过渡过程时间短物理含义物理含义时间常数时间常数 的大小反映了电路过渡过程时间的长短的大小反映了电路过渡过程时间的长短 = L/R 1/1 RLp电流初值电流初值i(0)一定:一定:(3 3)能量关系)能量关系RdtiWR 02 电感电感不断释放能量被电阻吸收不断释放能量被电阻吸收, , 直到全部消耗完毕直到全部消耗完毕. .设设iL(0+)=I0电感放出能量:电感放出能量: 2021LI电阻吸收(消耗)能量:电阻吸收(消耗)能量:RdteIRLt2/ 00)( 2021LI dteRIRLt/2 020 02 20| )2/(RCteRLRIiL+uLRiL (0+) = iL(0) = 1 AuV (0+)= 10000V 造成造成V损坏。损坏。例例1t=0时时 , 打开开关打开开关K,求,求uv。现象现象 :电压表坏了:电压表坏了0 / teitL 电压表量程:电压表量程:50VsVRRL4104100004 0100002500 teiRutLVV解解iLLR10ViLK(t=0)+uVL=4HR=10 VRV10k 10V kRV10例例2t=0时时 , 开关开关K由由12,求电感电压和电流及开关两,求电感电压和电流及开关两端电压端电压u12。0V 12 A2 tedtdiLueitLLtLsRL166 解解iLK(t=0)+24V6H3 4 4 6 +uL2 12AiiLL26366/32424)0()0( t 0iL+uLR 66/)42(3RVeiutL 424242412小结小结4.4.一阶电路的零输入响应和初始值成正比,称为零输入线性。一阶电路的零输入响应和初始值成正比,称为零输入线性。 一阶电路的零输入响应是由储能元件的初值引起的一阶电路的零输入响应是由储能元件的初值引起的 响应响应, , 都是由初始值衰减为零的指数衰减函数。都是由初始值衰减为零的指数衰减函数。2. 2. 衰减快慢取决于时间常数衰减快慢取决于时间常数 RC电路电路 = RC , RL电路电路 = L/R R为与动态元件相连的一端口电路的等效电阻。为与动态元件相连的一端口电路的等效电阻。3. 3. 同一电路中所有响应具有相同的时间常数。同一电路中所有响应具有相同的时间常数。 teyty )0()(iL(0+)= iL(0)uC (0+) = uC (0)RC电路电路RL电路电路动态元件初始能量为零,由动态元件初始能量为零,由t 0电路电路中中外加输入激励作用所产生的响应。外加输入激励作用所产生的响应。SCCUutuRC dd列方程:列方程:iK(t=0)US+uRC+uCRuC (0)=06.3 6.3 一阶电路的零状态响应一阶电路的零状态响应 非齐次线性常微分方程非齐次线性常微分方程解答形式为:解答形式为:cccuuu 1. 1. RC电路的零状态响应电路的零状态响应零状态响应零状态响应齐次方程通解齐次方程通解非齐非齐次方次方程特程特解解与输入激励的变化规律有关,为电路的稳态解与输入激励的变化规律有关,为电路的稳态解RCtCAeu 变化规律由电路参数和结构决定变化规律由电路参数和结构决定全解全解uC (0+)=A+US= 0 A= US由初始条件由初始条件 uC (0+)=0 定积分常数定积分常数 A的通解的通解0dd CCutuRCSCUu RCtSCCCAeUuutu )(通解(自由分量,暂态分量)通解(自由分量,暂态分量)Cu 特解(强制分量,稳态分量)特解(强制分量,稳态分量)Cu SCCUutuRC dd的特解的特解)0( )1( teUeUUuRCtSRCtSScRCtSeRUtuCi ddC-USuCuC“UStiRUS0tuc0 (1 1)电压、电流是随时间按同一指数规律变化的函数;)电压、电流是随时间按同一指数规律变化的函数; 电容电压由两部分构成:电容电压由两部分构成:从以上式子可以得出:从以上式子可以得出:连续连续函数函数跃变跃变稳态分量(强制分量)稳态分量(强制分量)暫态分量(自由分量)暫态分量(自由分量)+ (2 2)响应变化的快慢,由时间常数)响应变化的快慢,由时间常数 RC决定;决定; 大,充电大,充电 慢,慢, 小充电就快。小充电就快。 (3 3)响应与外加激励成线性关系;)响应与外加激励成线性关系;(4 4)能量关系)能量关系221SCU电容储存:电容储存:电源提供能量:电源提供能量:20dSSSCUqUtiU 221SCU 电阻消耗电阻消耗tRRUtRiRCSted)(d2002 RC+-US电源提供的能量一半消耗在电阻上,电源提供的能量一半消耗在电阻上,一半转换成电场能量储存在电容中。一半转换成电场能量储存在电容中。例例t=0时时 , , 开关开关K K闭合,已知闭合,已知 uC(0)=0,求(求(1 1)电容电压和电流,(电容电压和电流,(2 2)uC80V时的充电时间时的充电时间t 。解解500 10 F+-100VK+uCi(1) 这是一个这是一个RC电路零状电路零状态响应问题,有:态响应问题,有:)0()V e-100(1 )1(200t- teUuRCtScsRC3510510500 AeeRUtuCitRCtS200C2 . 0dd (2 2)设经过)设经过t1秒,秒,uC80V 8.045mst)e-100(1801-200t1 2. 2. RL电路的零状态响应电路的零状态响应SLLUiRtdidL )1(tLRSLeRUi tLRSLLeUtiLu ddiLK(t=0)US+uRL+uLR已知已知iL(0)=0,电路方程为电路方程为:LLLiii tuLUStiLRUS00RUiSL A0)0(tLRSAeRU 例例1t=0时时 , ,开关开关K打开,求打开,求t0t0后后iL、uL的变化规律的变化规律 。解解这是一个这是一个RL电路零状态响电路零状态响应问题,先化简电路,有:应问题,先化简电路,有:iLK+uL2HR80 10A200 300 iL+uL2H10AReq 200300/20080eqRAiL10)( sRLeq01. 0200/2/ AetitL)1(10)(100 VeeRtutteqL100100200010)( t0例例2t=0时时 , ,开关开关K打开,求打开,求t0t0后后iL、uL的及电流源的的及电流源的端电压端电压。解解这是一个这是一个RL电路零状态响电路零状态响应问题,先化简电路,有:应问题,先化简电路,有:iLK+uL2H10 2A10 5 +ut0iL+uL2HUSReq+ 201010eqRVUS20102 sRLeq1 . 020/2/ AetitL)1()(10 VeeUtuttSL101020)( ARUieqSL1/)( VeuiIutLLS101020105 6.4 6.4 一阶电路的全响应一阶电路的全响应电路的初始状态不为零,同时又有外加电路的初始状态不为零,同时又有外加激励源作用时电路中产生的响应。激励源作用时电路中产生的响应。iK(t=0)US+uRC+uCRSCCUutuRC dd解答为解答为 uC(t) = uC + uCuC (0)=U0以以RC电路为例,电路微分方程:电路为例,电路微分方程: =RC1. 1. 全响应全响应全响应全响应稳态解稳态解 uC = US暂态解暂态解 tCeu AuC (0+)=A+US=U0 A=U0 - US由起始值定由起始值定A2. 2. 全响应的两种分解方式全响应的两种分解方式0)(0 teUUUAeUutSStSC 强制分量强制分量(稳态解稳态解)自由分量自由分量(暂态解暂态解)uC-USU0暂态解暂态解uCUS稳态解稳态解U0uc全解全解tuc0全响应全响应 = 强制分量强制分量(稳态解稳态解)+自由分量自由分量(暂态解暂态解)(1) 着眼于电路的两种工作状态着眼于电路的两种工作状态物理概念清晰物理概念清晰iK(t=0)US+uRC+uCRuC (0)=U0iK(t=0)US+uRC+ uCR=uC (0)=0+uC (0)=U0C+ uCiK(t=0)+uRR全响应全响应= 零状态响应零状态响应 + 零输入响应零输入响应零状态响应零状态响应零输入响应零输入响应)0()1(0 teUeUuttSC (2).(2). 着眼于因果关系着眼于因果关系便于叠加计算便于叠加计算)0()1(0 teUeUuttSC 零状态响应零状态响应零输入响应零输入响应tuc0US零状态响应零状态响应全响应全响应零输入响应零输入响应U0例例1t=0时时 , ,开关开关K打开,求打开,求t0t0后的后的iL、uL解解这是一个这是一个RL电路全响应问电路全响应问题,有:题,有:iLK(t=0)+24V0.6H4 +uL8 sRL20/112/6 . 0/ ARUiiSLL6/)0()0(1 AetitL206)( 零输入响应:零输入响应:AetitL)1(1224)(20 零状态响应:零状态响应:AeeetitttL20202042)1(26)( 全响应:全响应:或求出稳态分量:或求出稳态分量:AiL212/24)( 全响应:全响应:AAetitL202)( 代入初值有:代入初值有:62AA=4例例2t=0时时 , ,开关开关K闭合,求闭合,求t0t0后的后的iC、uC及电流源两端及电流源两端的电压。的电压。解解这是一个这是一个RC电路全响应电路全响应问题,有:问题,有:+10V1A1 +uC1 +u1 稳态分量:稳态分量:VuC11110)( )1,1)0(FCVuC 全响应:全响应:VAetutC5 . 011)( sRC21)11( A=10VetutC5 . 01011)( AedtdutitCC5 . 05)( +24V1A1 +uC1 +u1 VeuitutCC5 . 0512111)( 3. 3. 三要素法分析一阶电路三要素法分析一阶电路 teffftf )()0()()(0 时间常数时间常数初始值初始值稳态解稳态解三要素三要素 )0( )( ff一阶电路的数学模型是一阶微分方程:一阶电路的数学模型是一阶微分方程: teftf A)()(令令 t = 0+A)()0(0 ff 0)()0(ffAcbftdfda 其解答一般形式为:其解答一般形式为:分析一阶电路问题转为求解电路的三个要素的问题分析一阶电路问题转为求解电路的三个要素的问题用用0+等效电路求解等效电路求解用用t 的稳态的稳态电路求解电路求解直流激励时:直流激励时:)()(0 ffV2)0()0( CCuuV667. 01)1/2()( Cus2332 CReq 0 33. 1667. 0)667. 02(667. 05 . 05 . 0 teeuttC1A2 例例11 3F+-uC已知:已知:t=0时合开关,求换路后的时合开关,求换路后的uC(t) 。解解tuc2(V)0.6670 tcccceuuutu)()0()()(