圆的方程练习题答案.doc
精品文档,仅供学习与交流,如有侵权请联系网站删除 圆的方程练习题答案A级基础演练一、选择题1(2013·济宁一中月考)若直线3xya0过圆x2y22x4y0的圆心,则a的值为 ()A1 B1 C3 D3解析化圆为标准形式(x1)2(y2)25,圆心为(1,2)直线过圆心,3×(1)2a0,a1.答案B2(2013·太原质检)设圆的方程是x2y22ax2y(a1)20,若0<a<1,则原点与圆的位置关系是 ()A原点在圆上 B原点在圆外C原点在圆内 D不确定解析将圆的一般方程化为标准方程(xa)2(y1)22a,因为0<a<1,所以(0a)2(01)22a(a1)2>0,所以原点在圆外答案B3圆(x2)2y25关于直线yx对称的圆的方程为 ()A(x2)2y25 Bx2(y2)25C(x2)2(y2)25 Dx2(y2)25解析由题意知所求圆的圆心坐标为(0,2),所以所求圆的方程为x2(y2)25.答案D4(2013·郑州模拟)动点P到点A(8,0)的距离是到点B(2,0)的距离的2倍,则动点P的轨迹方程为 ()Ax2y232 Bx2y216C(x1)2y216 Dx2(y1)216解析设P(x,y),则由题意可得:2,化简整理得x2y216,故选B.答案B二、填空题5以A(1,3)和B(3,5)为直径两端点的圆的标准方程为_解析由中点坐标公式得AB的中点即圆的圆心坐标为(2,4),再由两点间的距离公式得圆的半径为,故圆的标准方程为(x2)2(y4)22.答案(x2)2(y4)226已知直线l:xy40与圆C:(x1)2(y1)22,则圆C上各点到l的距离的最小值为_解析由题意得C上各点到直线l的距离的最小值等于圆心(1,1)到直线l的距离减去半径,即.答案三、解答题7(12分)求适合下列条件的圆的方程:(1)圆心在直线y4x上,且与直线l:xy10相切于点P(3,2);(2)过三点A(1,12),B(7,10),C(9,2)解(1)法一设圆的标准方程为(xa)2(yb)2r2,则有解得a1,b4,r2.圆的方程为(x1)2(y4)28.法二过切点且与xy10垂直的直线为y2x3,与y4x联立可求得圆心为(1,4)半径r2,所求圆的方程为(x1)2(y4)28.(2)法一设圆的一般方程为x2y2DxEyF0,则解得D2,E4,F95.所求圆的方程为x2y22x4y950.法二由A(1,12),B(7,10),得AB的中点坐标为(4,11),kAB,则AB的垂直平分线方程为3xy10.同理得AC的垂直平分线方程为xy30.联立得即圆心坐标为(1,2),半径r10.所求圆的方程为(x1)2(y2)2100.8(13分)已知以点P为圆心的圆经过点A(1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|4.(1)求直线CD的方程;(2)求圆P的方程解(1)直线AB的斜率k1,AB的中点坐标为(1,2),直线CD的方程为y2(x1),即xy30.(2)设圆心P(a,b),则由P在CD上得ab30.又直径|CD|4,|PA|2,(a1)2b240,由解得或圆心P(3,6)或P(5,2),圆P的方程为(x3)2(y6)240或(x5)2(y2)240【精品文档】第 3 页