一元一次方程应用难题精选(含答案解析).doc
如有侵权,请联系网站删除,仅供学习与交流一元一次方程应用难题精选(含答案解析)【精品文档】第 17 页一主观题(共8小题,每题1分)1. 某公司现有甲、乙两种品牌的打印机,其中甲品牌有A,B两种型号,乙品牌有C,D,E三种型号朝阳中学计划从甲、乙两种品牌中各选购一种型号的打印机(1)利用树状图或列表法写出所有选购方案;(2)若各种型号的打印机被选购的可能性相同,那么C型号打印机被选购的概率是多少?(3)各种型号打印机的价格如下表:甲品牌乙品牌型号ABCDE价格(元)20001700130012001000朝阳中学购买了两种品牌的打印机共30台,其中乙品牌只选购了E型号,共用去资金5万元,问E型号的打印机购买了多少台?2. 甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元(1)求甲乙两件服装的进价各是多少元;(2)由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;(3)若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数)3. 2012年,某地开始实施农村义务教育学校营养计划-“蛋奶工程”该地农村小学每份营养餐的标准是质量为300克,蛋白质含量为8%,包括一盒牛奶、一包饼干和一个鸡蛋已知牛奶的蛋白质含量为5%,饼干的蛋白质含量为12.5%,鸡蛋的蛋白质含量为15%,一个鸡蛋的质量为60克(1)一个鸡蛋中含蛋白质的质量为多少克?(2)每份营养餐中牛奶和饼干的质量分别为多少克?4. 天宇便利店老板到厂家购进A,B两种香油,A种香油每瓶进价6.5元,B种香油每瓶进价8元,购进140瓶,共花了1 000元,且该店销售A种香油每瓶8元,B种香油每瓶10元(1)该店购进A,B两种香油各多少瓶?(2)将购进140瓶香油全部销售完可获利多少元?(3)老板打算再以原来的进价购进A,B两种香油共200瓶,计划投资不超过1 420元,且按原来的售价将这200瓶香油销售完成获利不低于339元,请问有哪几种购货方案?5. 某校科技夏令营的学生在3位老师的带领下,准备赴北京大学参观,体验大学生活现有两家旅行社前来洽谈,报价均为每人2000元,且各有优惠希望旅行社表示:带队老师免费,学生按8折收费;青春旅行社表示师生一律按7折收费,经核算发现,参加两家旅行社的实际费用正好相等(1)该校参加科技夏令营的学生共有多少人?(2)如果又增加了部分学生,学校应选择哪家旅行社?为什么?6. 甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元(1)求甲乙两件服装的进价各是多少元;(2)由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;(3)若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数)7. 一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?8. 义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元且购买5块A型小黑板和4块B型小黑板共需820元(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?二填空题(共15小题,每题0分)1. 甲、乙两人从A点同时同向出发沿400米的环形跑道跑步,过一段时间后,甲在跑道上离A点200米处,而乙在离A点不到100米处正向A点跑去若甲、乙两人的速度比是4:3,则此时乙至少跑了 _米2. 电子跳蚤落在数轴上的某点k,第一步从k向左跳1个单位到k1,第二步由k1向右跳2个单位到k2,第三步由k向左跳3个单位到k3,第四步由k3向右跳4个单位到k4,按以上规律跳了100步时,电子跳蚤落在数轴上的点k100所表示的数恰是19.94则电子跳蚤的初始位置k点所表示的数是_3. 第三届中国大学生方程式汽车比赛赛前,甲、乙两辆参赛小汽车在一个封闭的环形跑道内进行耐久测试两车从同一地点沿相同方向同时起步后,乙车速超过甲车速,在第15分钟时甲车提速,在第18分钟时甲车追上乙车并且开始超过乙,在第23分钟时,甲车再次追上乙车已知在测试中甲、乙两车均是匀速行驶,那么如果甲车不提速,乙车首次超过甲车所用的时间是_分钟4. 去年暑假某同学为锻炼自己,通过了解市场行情,从批发市场购进若干件印有“设计未来”标志的文化衫到自由市场去销售首先按批发价提高25%销售了进货的60%,若要使最终赢利35%,则应在现行售价的基础上提高_%销售完剩余的文化衫5. 某电脑公司在5月1日将500台电脑投放市场,经市场调研发现,该批电脑每隔10天平均日销售量减少2台,现准备用38天销售完该批电脑,则预计该公司5月1日至5月10日的平均日销售量是_台6. 某人在同一条路上来回一次共用2小时来时步行,平均速度是5千米/小时;回去的时坐公共汽车,平均速度是20千米/小时,则这条路长是_千米7. 某市居民用电价格改革方案已出台,为鼓励居民节约用电,对居民生活用电实行阶梯制价格(见表):“一户一表”用电量不超过a千瓦时超过a千瓦时的部分单价(元/千瓦时)0.50.6小芳家二月份用电200千瓦时,交电费105元,则a=_8. 某地按以下规定收取每月电费:用电量如果不超过60度,按每度电0.8元收费;如果超过60度则超过部分按1.2元收费已知某用户3月份交电费66元那么3月份该用户用电量为_度9. 已知AB是一段只有3米长的窄道路,由于一辆小汽车与一辆大卡车在AB段相遇,必须倒车才能继续通过如果小汽车在AB段正常行驶需10分钟,大卡车在AB段正常行驶需20分钟,小汽车在AB段倒车的速度是它正常行驶速度的,大卡车在AB段倒车的速度是它正常行驶的,小汽车需倒车的路程是大卡车的4倍问两车都通过AB这段狭窄路面的最短时间是_分钟10. 第三届中国大学生方程式汽车比赛赛前,甲、乙两辆参赛小汽车在一个封闭的环形跑道内进行耐久测试两车从同一地点沿相同方向同时起步后,乙车速超过甲车速,在第15分钟时甲车提速,在第18分钟时甲车追上乙车并且开始超过乙,在第23分钟时,甲车再次追上乙车已知在测试中甲、乙两车均是匀速行驶,那么如果甲车不提速,乙车首次超过甲车所用的时间是_分钟11. 一杯“可乐”饮料售价3.6元,商家为了促销,顾客每买一杯“可乐”饮料获一张赠券,每三张赠券可兑换一杯“可乐”饮料,则每张赠券的价值相当于_元12. 某公司生产的一种饮料由A、B两种原液按一定比例配制而成,其中A原液成本价为10元/千克,B原液为15元/千克,按现行价格销售每千克获得60%的利润率由于物价上涨,A原液上涨20%,B原液上涨10%,配制后的总成本增加15%,公司为了拓展市场,打算再投入现行总成本的25%做广告宣传,使得销售成本再次增加,如果要保证每千克的利润率不变,则此时这种饮料的售价与原售价之差为_元/千克13. “家电下乡”农民得实惠村民小郑购买一台双门冰箱,在扣除13%的政府财政补贴后,再减去商场赠送的“家电下乡”消费券100元,实际只花了1988元钱,那么他购买这台冰箱节省了_元钱14. 有一群麻雀,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只麻雀对地上觅食的麻雀说:“若从你们中飞上来一只,则树下的麻雀就是这群麻雀总数的;若从树上飞下去一只,则树上、树下的麻雀就一样多了”那么这群麻雀一共有_只15. 小明同学买了一包弹球,其中是绿色的,是黄色的,余下的是蓝色的如果有12个蓝色的弹球,那么,他总共买了_个弹球三单选题(共6小题,每题0分)1. 某商家售出两种商品皆为120元,其中一种商品盈利25%另一种商品亏损25%,则商家在这次交易中的盈亏情况为( )A盈B亏C不盈不亏D不清楚2. 一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是( )A100元B105元C108元D118元3. 小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是( )ABCD4. 某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有( )A54盏B55盏C56盏D57盏5. 某商场对顾客实行优惠,规定:(1)如一次购物不超过200元,则不予折扣;(2)如一次购物超过200元但不超过500元的,按标价给予九折优惠;(3)如一次购物超过500元的,其中500元按第(2)条给予优惠,超过500元的部分则给予八折优惠某人两次去购物,分别付款168元与423元,如果他只去一次购买同样的商品,则应付款是( )A522.8元B510.4元C560.4元D472.8元6. 2010年“地球停电一小时”活动的某地区烛光晚餐中,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位则下列方程正确的是( )A30x-8=31x+26B30x+8=31x+26C30x-8=31x-26D30x+8=31x-26-答题卡-一主观题1. 答案: E型号的打印机应选购10台1. 解释: 分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率;根据资金得到相应的方程,求解即可解答:解:(1)所列树状图或列表表示为: C D E AA,C A,D A,E BB,C B,D B,E 结果为:(A,C),(A,D),(A,E),(B,C),(B,D),(B,E);(2)由(1)知C型号的打印机被选购的概率为;(3)设选购E型号的打印机x台(x为正整数),则选购甲品牌(A或B型号)(30-x)台,由题意得:当甲品牌选A型号时:1000x+(30-x)×2000=50000,解得x=10,当甲品牌选B型号时:1000x+(30-x)×1700=50000,解得(不合题意),故E型号的打印机应选购10台点评:本题着重考查了用树状图列举随机事件出现的所有情况,并求出某些事件的概率,但应注意在求概率时各种情况出现的可能性务必相同用到的知识点为:概率=所求情况数与总情况数之比2. 答案: 定价至少为296元时,乙服装才可获得利润2. 解释: 分析:(1)若设甲服装的进价为x元,则乙服装的进价为(500-x)元根据公式:总利润=总售价-总进价,即可列出方程(2)利用乙服装的进价为200元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可解答:解:(1)设甲服装的进价为x元,则乙服装的进价为(500-x)元,根据题意得:90%(1+30%)x+90%(1+20%)(500-x)-500=67,解得:x=300,500-x=200答:甲服装的进价为300元、乙服装的进价为200元(2)乙服装的进价为200元,经过两次上调价格后,使乙服装每件的进价达到242元,设每件乙服装进价的平均增长率为y,则200(1+y) 2=242,解得:y1=0.1=10%,y2=-2.1(不合题意舍去)答:每件乙服装进价的平均增长率为10%;(3)每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),商场仍按9折出售,设定价为a元时,0.9a-266.20,解得:a故定价至少为296元时,乙服装才可获得利润点评:此题主要考查了一元二次方程的应用以及增长率问题和一元一次不等式的应用,注意售价的算法:售价=定价×打折数3. 答案: 饼干的质量为:300-60-x=40答:每份营养餐中牛奶和饼干的质量分别为200克和40克3. 解释: 分析:(1)鸡蛋中蛋白质的质量=鸡蛋的重量×鸡蛋的蛋白质含量就可以直接求出答案;(2)设每份营养餐中牛奶的质量为x克,则饼干的质量为(300-60-x)克,根据题意列出方程求出其解就可以解答:解:(1)由题意得:60×15%=9(克)答:一个鸡蛋中含蛋白质的质量为9克(2)设每份营养餐中牛奶的质量为x克,则饼干的质量为(300-60-x)克,由题意得:5%x+12.5%(300-60-x)+60×15%=300×8%解得:x=200故饼干的质量为:300-60-x=40答:每份营养餐中牛奶和饼干的质量分别为200克和40克点评:本题考查了列一元一次方程解实际问题的运用,根据各种食品的蛋白质的和加起来等于总蛋白质就可以建立方程,在解答时确定等量关系是关键4. 答案: 方案1:A种香油120瓶B种香油80瓶方案2:A种香油121瓶B种香油79瓶方案3:A种香油122瓶B种香油78瓶答:(1)该店购进A种香油80瓶,B种香油60瓶(2)将购进的140瓶全部销售完可获利240元(3)有三种购货方案:方案1:A种香油120瓶B种香油80瓶;方案2:A种香油121瓶B种香油79瓶;方案3:A种香油122瓶B种香油78瓶4. 解释: 分析:(1)求A,B两种香油各购进多少瓶,根据题意购进140瓶,共花了1 000元,可列方程求解即可(2)在(1)的基础之上已经得出A,B两种香油购进的瓶数,算出总价减去总进价即可得出获利多少(3)由题意可列不等式组,解得120a122因为a为非负整数,所以a取120,121,122所以200-a=80或79或78解答:解:(1)设:该店购进A种香油x瓶,B种香油(140-x)瓶,由题意可得6.5x+8(140-x)=1000,解得x=80,140-x=60答:该店购进A种香油80瓶,B种香油60瓶(2)80×(8-6.5)+60×(10-8)=240答:将购进140瓶香油全部销售完可获利240元(3)设:购进A种香油a瓶,B种香油(200-a)瓶,由题意可知6.5a+8(200-a)14201.5a+2(200-a)339解得120a122因为a为非负整数,所以a取120,121,122所以200-a=80或79或78故方案1:A种香油120瓶B种香油80瓶方案2:A种香油121瓶B种香油79瓶方案3:A种香油122瓶B种香油78瓶答:(1)该店购进A种香油80瓶,B种香油60瓶(2)将购进的140瓶全部销售完可获利240元(3)有三种购货方案:方案1:A种香油120瓶B种香油80瓶;方案2:A种香油121瓶B种香油79瓶;方案3:A种香油122瓶B种香油78瓶点评:本题考查一元一次不等式组的应用,读懂题列出不等式关系式即可求解5. 答案: 如果又增加了部分学生,学校应选择青春旅行社合算5. 解释: 分析:(1)设该校参加科技夏令营的学生共有x人,根据题意可得等量关系:在希望旅行社的花费为2000x×8折=在青春旅行社的花费为2000(x+3)×7折,根据等量关系列出方程解方程即可;(2)设学生总数为a人,在希望旅行社的花费为2000a×8折,在青春旅行社的花费为2000(a+3)×7折,如果选择希望旅行社合算,则2000a×80%2000(a+3)×70%,如果选择青春旅行社合算,则2000a×80%2000(a+3)×70%,解不等式即可知道如果又增加了部分学生,学校应选择哪家旅行社解答:解:(1)设该校参加科技夏令营的学生共有x人,由题意得:2000x×80%=2000(x+3)×70%,解得:x=21,答:该校参加科技夏令营的学生共有21人;(2)设学生总数为a人,由题意得:如果选择希望旅行社合算,则2000a×80%2000(a+3)×70%,解得:a21,如果选择青春旅行社合算,则2000a×80%2000(a+3)×70%,解得:a21,故如果又增加了部分学生,学校应选择青春旅行社合算点评:此题主要考查了一元一次方程与一元一次不等式的应用,关键是设出学生人数,表示出在希望旅行社的花费和在青春旅行社的花费6. 答案: 定价至少为296元时,乙服装才可获得利润6. 解释: 分析:(1)若设甲服装的进价为x元,则乙服装的进价为(500-x)元根据公式:总利润=总售价-总进价,即可列出方程(2)利用乙服装的进价为200元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可解答:解:(1)设甲服装的进价为x元,则乙服装的进价为(500-x)元,根据题意得:90%(1+30%)x+90%(1+20%)(500-x)-500=67,解得:x=300,500-x=200答:甲服装的进价为300元、乙服装的进价为200元(2)乙服装的进价为200元,经过两次上调价格后,使乙服装每件的进价达到242元,设每件乙服装进价的平均增长率为y,则200(1+y) 2=242,解得:y1=0.1=10%,y2=-2.1(不合题意舍去)答:每件乙服装进价的平均增长率为10%;(3)每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),商场仍按9折出售,设定价为a元时,0.9a-266.20,解得:a故定价至少为296元时,乙服装才可获得利润点评:此题主要考查了一元二次方程的应用以及增长率问题和一元一次不等式的应用,注意售价的算法:售价=定价×打折数7. 答案: 甲公司单独完成此项工程,需20天,乙公司单独完成此项工程,需30天;(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y-1500)元,根据题意得12(y+y-1500)=102000,解得y=5000,甲公司单独完成此项工程所需的施工费:20×5000=100000(元);乙公司单独完成此项工程所需的施工费:30×(5000-1500)=105000(元);故甲公司的施工费较少7. 解释: 分析:(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可(2)分别求得两个公司施工所需费用后比较即可得到结论解答:解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天根据题意,得+=,解得x=20,经检验知x=20是方程的解且符合题意1.5x=30故甲公司单独完成此项工程,需20天,乙公司单独完成此项工程,需30天;(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y-1500)元,根据题意得12(y+y-1500)=102000,解得y=5000,甲公司单独完成此项工程所需的施工费:20×5000=100000(元);乙公司单独完成此项工程所需的施工费:30×(5000-1500)=105000(元);故甲公司的施工费较少点评:本题考查了分式方程的应用,解题的关键是从实际问题中整理出等量关系并利用等量关系求解8. 答案: 8. 解释: 分析:(1)设购买一块A型小黑板需要x元,一块B型为(x-20)元,根据,购买一块A型小黑板比买一块B型小黑板多用20元且购买5块A型小黑板和4块B型小黑板共需820元可列方程求解(2)设购买A型小黑板m块,则购买B型小黑板(60-m)块,根据需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,可列不等式组求解解答:解:(1)设购买一块A型小黑板需要x元,一块B型为(x-20)元,5x+4(x-20)=820,x=100,x-20=80,购买A型100元,B型80元;(2)设购买A型小黑板m块,则购买B型小黑板(60-m)块,20m22,而m为整数,所以m为21或22当m=21时,60-m=39;当m=22时,60-m=38所以有两种购买方案:方案一购买A21块,B 39块、方案二 购买A22块,B38块点评:本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A、B两种型号小黑板的总费用不超过5240元并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,列出不等式组求解二填空题1. 答案: 750米1. 解释: 分析:因为甲、乙两人的速度比是4:3,所以,甲、乙两人的路程比S甲:S乙=4:3;由过一段时间后,甲在跑道上离A点200米处,所以,甲跑的路程为:S甲=400k+200米(k为自然数),此时,乙在离A点不到100米处正向A点跑去;再由题意分类讨论解答解答:解:设甲、乙两人的路程分别为S甲、S乙,由题意知,S甲:S乙=4:3;由过一段时间后,甲在跑道上离A点200米处,根据题意,得S甲=400k+200米(k为自然数),当k=0时,S乙=×(400×0+200)=150米,不符合题意;当k=1时,S乙=×(400×1+200)=450米,不符合题意;当k=2时,S乙=×(400×2+200)=750米,符合题意故答案为:750米点评:本题考查了一元一次方程的应用,关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,分类讨论再求解2. 答案: -30.062. 解释: 分析:易得每跳动2次,向右平移1个单位,跳动100次,相当于在原数的基础上加了50,相应的等量关系为:原数字+50=19.94解答:解:设k0点所对应的数为19.94-100+99-98+97-6+5-4+3-2+1=-30.06,故答案为:-30.06点评:考查一元一次方程的应用,得到每跳动2次相对于原数的规律是解决本题的突破点3. 答案: 253. 解释: 分析:首先表示出甲车提速前速度比乙车慢a/分钟,提速后速度比乙车快b/分钟,进而利用甲车在第15分钟时,离乙车的距离为15a,这个距离在第18分钟追回来,即可得出等式方程求出a,b关系,再表示出一圈的路程即可得出答案解答:解:设甲车提速前速度比乙车慢a/分钟,提速后速度比乙车快b/分钟那么有甲车在第15分钟时,离乙车的距离为15a这个距离在第18分钟追回来那么15a=(18-15)b即b=5a,而且在第23分钟时,甲车比乙车多跑一圈那么一圈的路程为(23-18)b=5b=25a,所以甲车不提速时,乙车首次超过甲车(即多跑一圈)所需时间为:25a÷a=25分钟,故答案为:25点评:此题主要考查了追击问题,根据已知得出a,b之间的关系是解题关键4. 答案: 在现行售价的基础上提高20%销售完剩余的文化衫故204. 解释: 分析:要求应在售价的基础上提高的百分数,就要先设出求知数x,再根据题意列出方程求解题中的等量关系为:按批发价提高25%销售了进货的60%后经过提价=最终赢利35%此题要把原价看作单位1解答:解:设应在现行售价的基础上提高x%销售完剩余的文化衫,依题意有:(1+25%)×60%+(1+25%)(1+x%)×40%=1+35%,解得:x=20故在现行售价的基础上提高20%销售完剩余的文化衫故答案为:20点评:考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解5. 答案: 填165. 解释: 分析:分别表示每10天的日销售量,设预计该公司5月1日至5月10日的平均日销售量是x台,则11到20号就是(x-2)台,21到30号就是(x-4)台,第31天到第38天就是(x-6)台,所以依此列方程得10x+10(x-2)+10(x-4)+8(x-6)=500求解即可解答:解:设预计该公司5月1日至5月10日的平均日销售量是x台,根据题意得:10x+10(x-2)+10(x-4)+8(x-6)=500解得x=16,故填16点评:此题首先读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解6. 答案: 86. 解释: 分析:设路长是x千米,根据某人在同一条路上来回一次共用2小时来时步行,平均速度是5千米/小时;回去的时坐公共汽车,平均速度是20千米/小时,可列方程求解解答:解:设路长是x千米,+=2x=8路长为8千米故答案为:8点评:本题考查理解题意的能力,关键设出路长,以时间做为等量关系列方程求解7. 答案: 1507. 解释: 分析:根据题意可得等量关系:不超过a千瓦时的电费+超过a千瓦时的电费=105元,根据等量关系列出方程,解出a的值即可解答:解:由题意得:0.5a+0.6(200-a)=105,解得:a=150,故答案为:150点评:此题主要考查了一元一次方程的应用,关键是正确找出题目中的等量关系,列出方程8. 答案: 答案为758. 解释: 分析:先判断出3月份用电量一定超过60度,再根据“某用户3月份交电费66元”得到等量关系:60×0.8+超过60度的用电量×1.2=66,设3月份该用户用电量为x度,从而列出方程求解即可解答:解:某用户3月份交电费66元,0.8×60=48元,6648,3月份用电量超过60度设3月份该用户用电量为x度,由题意,得:60×0.8+(x-60)×1.2=66,解得:x=75,答:3月份该用户用电量为75度故答案为75点评:本题考查用一元一次方程解决实际问题,判断出用电量在60度以上是解决本题的突破点,根据3月份的电费是66元列出方程是解决本题的关键9. 答案: 509. 解释: 分析:先根据题意求出小汽车和大卡车倒车的时间分别为50min和160min,然后分别讨论大卡车和小汽车分别倒车,两车都通过AB这段狭窄路面所用的时间,最后进行比较即可解答:解:小汽车X通过AB段正常行驶需要10分钟,小汽车在AB段倒车的速度是它正常行驶速度的,由此得出倒车时间AB段X=10÷=50分钟,卡车Y通过AB段正常行驶需20分钟,大卡车在AB段倒车的速度是它正常行驶速度的,由此得出倒车时间AB段Y=20÷=160分钟,又因为:小汽车需要倒车的路程是大卡车需倒车的路程的4倍,得到小车进入AB段,大车进入AB段,由此得出实际Y倒车时间=160×=32分钟,实际X倒车时间=50×=40分钟若Y倒X进则是32+20=52分钟两车都通过AB路段,若X倒Y进则是40+10=50分钟两车都通过AB路段,所以两车都通过AB路段的最短时间是50分钟故答案为:50点评:本题属于应用题,有一定难度,解题时注意分别讨论小汽车和大卡车分别倒车所用的时间10. 答案: 2510. 解释: 分析:首先表示出甲车提速前速度比乙车慢a/分钟,提速后速度比乙车快b/分钟,进而利用甲车在第15分钟时,离乙车的距离为15a,这个距离在第18分钟追回来,即可得出等式方程求出a,b关系,再表示出一圈的路程即可得出答案解答:解:设甲车提速前速度比乙车慢a/分钟,提速后速度比乙车快b/分钟那么有甲车在第15分钟时,离乙车的距离为15a这个距离在第18分钟追回来那么15a=(18-15)b即b=5a,而且在第23分钟时,甲车比乙车多跑一圈那么一圈的路程为(23-18)b=5b=25a,所以甲车不提速时,乙车首次超过甲车(即多跑一圈)所需时间为:25a÷a=25分钟,故答案为:25点评:此题主要考查了追击问题,根据已知得出a,b之间的关系是解题关键11. 答案: 答案为0.911. 解释: 分析:由题意,一杯可乐的实际价格=可乐的价格-奖券的价格;3张奖券的价格=一杯可乐的实际价格,因而设奖券的价格为x元由此可列方程求解解答:解:设每张奖券相当于x元,根据题意得:3x=3.6-x,解得:x=0.9故答案为0.9点评:考查一元一次方程的应用;得到3张奖券的价格的等量关系是解决本题的关键12. 答案: 8.412. 解释: 分析:设配制比例为1:x,则A原液上涨后的成本是10(1+20%)元,B原液上涨后的成本是15(1+10%)x元,配制后的总成本是(10+15x)(1+15%),根据题意可得方程10(1+20%)+15(1+10%)x=(10+15x)(1+15%),解可得配制比例,然后计算出原来每千克的成本和售价,然后表示出此时每千克成本和售价,即可算出此时售价与原售价之差解答:解:设配制比例为1:x,由题意得:10(1+20%)+15(1+10%)x=(10+15x)(1+15%),解得x=,则原来每千克成本为:(元),原来每千克售价为:12×(1+60%)=19.2(元)此时每千克成本为:12×(1+15%)(1+25%)=17.25(元),此时每千克售价为:17.25×(1+60%)=27.6(元),则此时售价与原售价之差为:27.6-19.2=8.4(元)故答案为:8.4点评:此题主要考查了一元一次方程的应用,关键是计算出配制比例,以及原售价和此时售价13. 答案: 可得方程1988+x=2400,解得x=412,即他购买这台冰箱节省了412元钱故41213. 解释: 分析:设节省了x元,由题意表示出这台冰箱的价格为(1988+100)÷(1-13%),根据等量关系:节省的钱数+实际花的钱数=价格,可列出方程,解出即可解答:解:设节省了x元,由题意得,这台冰箱的价格为(1988+100)÷(1-13%)=2400,故可得方程:1988+x=2400,解得:x=412,即他购买这台冰箱节省了412元钱故答案为:412点评:此题考查一元一次方程的应用,利用所学知识解答实际问题是我们应具备的能力,认真审题并准确的列出方程是解题的关键14. 答案: 1214. 解释: 分析:设树下有x只麻雀,树上有(x+2)只,根据若从你们中飞上来一只,则树下的麻雀就是这群麻雀总数的,可列方程求解解答:解:设树下有x只麻雀,(x-1)=(x+x+2),x=55+5+2=12共有12只麻雀故答案为:12点评:本题考查一元一次方程的应用,关键是根据树下的可以确定树上的,然后根据树下的占总体的多少列方程求解15. 答案: 9615. 解释: 分析:设买了x个弹球,根据题意列出有关x的一元一次方程解之即可解答:解:设总共买了x个弹球,根据题意得:(x-x-x)=12解得:x=96故答案为:96点评:本题考查了一元一次方程的应用,解题的关键是从题目中找到能概括题目含义的相等关系,并正确的设出未知数列出方程三单选题1. 答案: B1. 解释: 分析:由已知可分别列一元一次方程求出盈利和亏本商品的成本价,然后计算出赚或亏多少盈利25%就是相当于成本价的1+25%,亏本25%就是相当于成本价的1-25%,由此可列方程求解解答:解:设盈利商品的成本价为x元,亏本的成本价为y元,根据题意得:(1+25%)x=120,(1-25%)y=120,解得:x=96,y=160,120-96+(120-160)=-16,所以赔16元故选:B点评:此题考查的知识点一元一次方程的应用-销售问题,解题的关键是先由已知列一元一次方程求出两种商品的成本价2. 答案: A2. 解释: 分析:根据题意,找出相等关系为,进价×(1+20%)=200×60%,设未知数列方程求解解答:解:设这件服装的进价为x元,依题意得:(1+20%)x=200×60%,解得:x=100,则这件服装的进价是100元故选A点评:此题考查的是一元一次方程的应用,解题的关键是找出相等关系,进价×(1+20%)=200×60%3. 答案: A3. 解释: 分析:先设他家到学校的路程是xkm,再把10分钟、5分钟化为小时的形式,根据题意列出方程,选出符合条件的正确选项即可解答:解:设他家到学校的路程是xkm,10分钟=小时,5分钟=小时,+=-故选A点评:本题考查的是由实际问题抽象出一元一次方程,解答此题的关键是把10分钟、5分钟化为小时的形式,这是此题的易错点4. 答案: B4. 解释: 分析:可设需更换的新型节能灯有x盏,根据等量关系:两种安装路灯方式的道路总长相等,列出方程求解即可解答:解:设需更换的新型节能灯有x盏,则70(x-1)=36×(106-1),70x=3850,x=55,则需更换的新型节能灯有55盏故选B点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解注意根据实际问题采取进1的近似数5. 答案: C5. 解释: 分析:某人两次去购物分别付款168元与423元,而423元是优惠后的付款价格,实际标价为423÷0.9=470元,如果他只去一次购买同样的商品即价值168+470=638元的商品,按规定(3)进行优惠即可解答:解:某人两次去购物,分别付款168元与423元,由于商场的优惠规定,168元的商品未优惠,而423元的商品是按九折优惠后的,则实际商品价格为423÷0.9=470元,如果他只去一次购买同样的商品即价值168+470=