DNA的复制机制.doc
-作者xxxx-日期xxxxDNA的复制机制【精品文档】DNA的复制机制所有的生物体在每个细胞分裂之前必须以非同寻常的准确度复制其DNA。在这一部分,我们将探索生物体内一个精巧的“复制机器”在以1000个核苷酸每秒的速度复制DNA的同时,是如何达到这一准确度的。碱基配对是DNA复制和DNA修复的基础第一章已经简单讨论过,DNA模板化是一条DNA链(或选定的部分)的核苷酸序列通过碱基互补配对(A与T,G与C)被拷贝出一条互补的DNA序列(Figure 5-2)。该过程需要DNA模板链中每个核苷酸被一个自由的(未聚合的)互补核苷酸识别,而且要求DNA螺旋的两条链被分开。这一分开,使得每个DNA碱基上的氢键的供体或受体基团暴露出来,以便和进来的合适的自由核苷酸配对,为其酶催化聚合为一条新DNA链校准。Figure 5-2 DNA双螺旋作为自身复制的模板。 因为核苷酸A只能和T成功配对,G之和C,所以DNA的每条链都作为一个模板通过碱基配对来指定其互补链的核苷酸序列。这样,一个双螺旋DNA分子可被精确复制。第一个聚合核苷酸的酶,DNA聚合酶发现与1957年。作为该酶底物的自由核苷酸是三磷酸脱氧核糖核苷,它们聚合为DNA要求一个单链模板。这一反应的逐步机制在Figures5-3和5-4中说明。Figure 5-3 DNA的合成化学一个脱氧核糖核苷酸被加到一条多聚核苷酸链(引物链)的3端是DNA合成的基础反应。如图所示,一个新来的三磷酸脱氧核糖核苷和一条存在的DNA链(模板链)进行碱基配对,引导新DNA链的形成,并且使之有一条互补核苷酸序列。Figure 5-4 由DNA聚合酶催化的DNA合成(A)如图所示,DNA聚合酶催化一个脱氧核糖核苷酸向一条多聚核苷酸链(引物链,已和另一模板链配对)的3-OH端的逐步添加。新合成的DNA链因此是以5-3的方向聚合的,正如前一幅图所示。因为每个新来的三磷酸脱氧核糖核苷必须和模板链配对以被DNA聚合酶识别,模板链决定了哪种脱氧核糖核苷酸(A,T,C,或者G)将被添加。焦磷酸盐的释放及其后续水解为两个无机磷酸盐分子导致巨大的有利的自由能改变,驱动了脱氧核苷酸的添加反应。(B)一个由X-线晶体学确定的大肠杆菌DNA聚合酶分子结构。通俗的讲,它就像一只右手,手掌手指和大拇指握住DNA。该图示例的是一个在DNA修复时起作用的DNA聚合酶,但是复制DNA的酶有相似的特征。DNA复制叉非对称在细胞内DNA复制期间,每条旧DNA链都作为形成一条完整新链的模板。因为一个分裂细胞的两个子细胞都遗传了包含旧链和新链的新DNA双螺旋(Figure 5-5),该DNA双螺旋据说是被DNA聚合酶半保留复制。这一任务是如何完成的呢?Figure 5-5 DNA复制的半保留性质在一轮复制中,DNA的每条链都用左形成互补链的模板。原始链因此经历很多代而完好无损。1960年代早期对完全复制的染色体进行的分析发现,一个局部的复制区域沿母DNA双螺旋向前移动。因其Y形结构该活跃区域被称为复制叉(Figure5-6)在复制叉处,两条新的子链被一个包含DNA聚合酶在内的多酶复合物合成。Figure 5-6 在一个环形染色体上两个复制叉朝相反方向移动。一个活跃的DNA复制区域沿正在复制的DNA分子向前移动,形成一个Y形DNA结构即复制叉:Y的两条臂是两个子DNA分子,Y的茎是母DNA螺旋。图中,母链为橙色;新合成的链为红色。DNA合成中不存在3-5的DNA聚合,只有5-3。Figure5-7 一种不正确的DNA复制模型。虽然看起来像是最简单的DNA复制模型,这里所示例的机制并非细胞使用的。在这个方案中,两条子DNA链都连续增长,利用两个末端磷酸(图中发红光黄圈所示)水解的能量在每条链上添加下一个核苷酸。这就要求链既以5-3方向增长也以3-5方向增长。催化3-5方向的核苷酸聚合的酶尚未发现。那么,3-5方向的总体链增长是如何实现的呢?答案是冈崎片段复制叉处短暂存在的1000-2000个核苷酸长度的DNA碎片(真核生物中也有相似的复制中介,长度只有100-200个核苷酸)。冈崎片段只以5-3链方向被聚合而成,合成以后被连接在一起形成连续的长DNA链。复制叉因此具有一个不对成的结构(Figure 5-8). 被连续合成的子链叫前导链,其合成稍微领先于另一条非连续的合成子链,即后随链。后随链的核苷酸聚合方向和DNA链的总体增长方向相反。后随链合成之所以要延迟,是因为必须等待前导链将合成冈崎片段的模板链暴露出来。后随链通过一种不连续的“后缝”机制合成意味着DNA复制只需要5-3类型的DNA聚合酶。Figure 5-8 DNA复制叉结构。 因为两条DNA子链都以5-3方向聚合,后随链上的DNA合成开始时必须被做成一系列短的DNA分子,称为冈崎片段。DNA复制的高保真要求几种校对机制正如本章开始所述,复制期间拷贝DNA的保真度为每109个拷贝的核苷酸中大约有1个错误。基于碱基互补配对的准确度,这一保真度比预期要高得多。标准的互补碱基配对对并非唯一的互补配对形式,比如,在螺旋几何中一些小的变化,DNA中G和T之间即可形成两个氢键。另外,四种DNA碱基会短暂出现稀少的互变异构体形式,比例为1比104或105.这些互变异构形式不改变螺旋几何即可发生错配:例如,C稀少的互变异构形式与A相配,而不是和G。当新来的三磷酸脱氧核糖核苷和DNA模板发生错配时,如果DNA聚合酶不做什么特殊的事,这个错误的核苷酸就会被包含在新DNA链中,产生频繁的变异。DNA复制的高保真度不仅依靠互补配对,还依靠几种校对机制顺序执行以修正任何可能已经出现的初始错配。第一个校对步骤,由DNA聚合酶在新核苷酸被加在增长链上之前执行。首先正确的核苷酸比不正确的核苷酸对移动的聚合酶有更高的亲和力,因为只有正确的核苷酸睬可和模板正确配对。此外,核苷酸键联之后,共价地添加到增长链上之前,DNA聚合酶必须进行一次构象改变。一个不正确的核苷酸比正确的核苷酸更有可能在这一步脱离。这一步因此让聚合酶在催化添加核苷酸之前两次检查准确的碱基配对几何。下一步错误修正反应,核酸外切校对. DNA聚合酶不能通过连接两个三磷酸脱氧核糖核苷来开始一条新多聚核苷酸链,而是绝对要求一条引物链已碱基配对的3-OH端来进一步添加核苷酸(见Figure 5-4)。所以如果引物链3-OH端的核苷酸错配了,DNA聚合酶就不能延伸这样一条链。DNA聚合酶分子在一个分开的催化位点(根据具体的聚合酶,在该聚合酶分子的一个分开的子单元或者分开的域里面)处理错配的引物链。进行校对的核酸外切酶沿3-5方向切除掉引物链3端任何未配对残基,直到足够的核苷酸被移除,重新生成了一个碱基配对的3-OH端,可引导DNA合成。这样,DNA聚合酶又作为一个“自我修正”酶,沿DNA移动时移除掉自己的聚合错误(Figures 5-9 和5-10)Figure 5-9 DNA聚合酶在DNA复制期间的核酸外切校对。在本例中,错配是因为包含了一个稀有的短暂的C碱基互变异构体形式(星号所示)。同样的校对机制适用于在3-OH端的任何其他错误包含的核苷酸。Figure 5-10 DNA聚合酶和DNA模板络合物在聚合模式(A左和编辑模式(右)下的结构略图。E为核酸外切反应的催化位点,P为聚合反应的催化位点。对完美配对的引物终端的要求对于DNA的自我修正性质是很重要的。DNA聚合酶在没有引物的情况下开始合成,要完全正确区分配对的和未配对的3-OH端,很明显不可能.相反,基因转录中的RNA聚合酶不需要有效的核酸外切校对:RNA中的错误把不会传给下一代,偶尔的缺陷RNA分子无长期影响。因此RNA聚合酶可以无需引物即开始合成.在RNA合成以及单独的mRNA翻译过程中,都发现了大约1/104的错误频率。这一水平比DNA复制的错误率高100,000倍。是一系列校对过程使得DNA复制过程相当的准确(table 5-1)。table 5-1 促进DNA高保真合成的三部曲。第三部,链指导错配修复,本章后续将介绍。链指导错配修复系统移除复制错误移除从复制机器逃脱的错误正如前面所述,细菌如大肠杆菌能够每30分钟分裂一次,使得从大量菌株中筛选找出一个稀有的在某一特定过程中发生改变的变种细胞相对容易。一个有趣的变种类型,包含了所谓增变基因中的改变,增变基因大大增大了自发突变率,即使在它们未激活时。并不奇怪的是,一个这样的变种所产生的的3-5校对核酸外切酶(DNA聚合酶的一部分,见Figures 5-9和5-10)是有缺陷的形式。当3-5的核酸外切酶校对有缺陷时,DNA聚合酶不再有效率地校对,许多本来可以被移除的错误在DNA中累积起来。对其他非正常高变异率的大肠杆菌变种的研究发现了另一种校对系统,该校对系统移除由DNA聚合酶产生而被校对核酸外切酶错过的错误。链指导错配修复系统,检测DNA螺旋中由于非互补碱基对不匹配而造成的潜在的扭曲。但是如果该校对系统仅仅识别新复制的DNA中的错配,随机修正两个错配核苷酸中的一个,就可能错误地修正原始模板链来匹配错误,因而不能降低总体错误率。为了有效,这样一个校对系统必须能够区分和移除新合成链上的错配核苷酸,新合成的链才是错误发生的地方。大肠杆菌中的错配校对系统所使用的链区分机制是依靠DNA中GATC序列中A残基的甲基化。唯一未被甲基化的GATC序列位于紧随复制叉后面的新链中。新链和旧链的识别就是通过未被甲基化的GATC的识别来实现的。链指导错配修复的三步过程包括:错配的识别,从新链中切除包含错误的DNA片段,以旧链为模板重新合成被切除的片段从而移除了错配。链指导错配修复系统减少了DNA复制期间的错误数量,见table 5-1.真核生物中,在错配位点区分新链和模板母链的机制不是依靠DNA甲基化。事实上,有些真核生物包括酵母和果蝇不会甲基化其任何DNA。新合成的链具有刻痕,生化专家揭示了这些刻痕(也被称作单链裂口)在真核生物中为链指导错配修复系统提供了信号,指导其去修复合适的链(新链)。Figure 5-23 真核生物中的链指导错配修复模型(A)The two proteins shown are present in both bacteria and eucaryotic cells: MutS binds specifically to a mismatched base pair, while MutL scans the nearby DNA for a nick. Once a nick is found, MutL triggers the degradation of the nicked strand all the way back through the mismatch. Because nicks are largely confined to newly replicated strands in eucaryotes, replication errors are selectively removed. In bacteria, the mechanism is the same, except that an additional protein in the complex (MutH) nicks unmethylated (and therefore newly replicated) GATC sequences, thereby beginning the process illustrated here. (B) The structure of the MutS protein bound to a DNA mismatch. This protein is a dimer, which grips the DNA double helix as shown, kinking the DNA at the mismatched base pair. It seems that the MutS protein scans the DNA for mismatches by testing for sites that can be readily kinked, which are those without a normal complementary base pair. (B, from G. Obmolova et al., Nature 407:703710, 2000. © Macmillan Magazines Ltd.)只有5-3方向的DNA复制允许有效的错误修正Figure 5-11An explanation for the 5-to-3 direction of DNA chain growthGrowth in the 5-to-3 direction, shown on the right, allows the chain to continue to be elongated when a mistake in polymerization has been removed by exonucleolytic proofreading (see Figure 5-9). In contrast, exonucleolytic proofreading in the hypothetical 3-to-5 polymerization scheme, shown on the left, would block further chain elongation. For convenience, only the primer strand of the DNA double helix is shown.一种特殊的聚合核苷酸的酶在后随链上合成短RNA引物分子对于前导链,仅在复制开始时需要一个特殊的引物:一旦复制叉建立起了,DNA聚合酶就将持续地面对一个配好对的链端以添加新核苷酸。然而,在复制叉的后随链上,DNA聚合酶每次完成一条新的冈崎片段(几秒钟),必须在模板链更前方的位点开始合成一个全新的片段(见Figure5-8)。一个专门的机制产生DNA聚合酶所需的碱基配对的引物链。该机制包括一种叫DNA引物酶的酶,用三磷酸核糖核苷酸在后随链上合成短的RNA引物(Figure 5-12).在真核生物中,这些引物大约为10个核苷酸长度,在后随链上间隔100-200个核苷酸。Figure 5-12 RNA引物合成A schematic view of the reaction catalyzed by DNA primase, the enzyme that synthesizes the short RNA primers made on the lagging strand using DNA as a template. Unlike DNA polymerase, this enzyme can start a new polynucleotide chain by joining two nucleoside triphosphates together. The primase synthesizes a short polynucleotide in the 5-to-3 direction and then stops, making the 3 end of this primer available for the DNA polymerase.因为DNA引物包含合适的碱基配对的具有3-OH端的核苷酸,所以可被DNA聚合酶在该端延长,以开始冈崎片段。当在DNA聚合酶遇到上一个冈崎片段的RNA引物时,冈崎片段的合成即终止。为了将这些DNA片段生成连续的DNA链,一个专门的DNA修复系统迅速行动,擦除旧的RNA引物,以DNA代替之。最后,一种叫DNA连接酶的酶,将新DNA片段的3端和上一个片段的5端连接起来(Figures 5-13 和5-14)。 Figure 5-13The synthesis of one of the many DNA fragments on the lagging strandIn eucaryotes, RNA primers are made at intervals spaced by about 200 nucleotides on the lagging strand, and each RNA primer is approximately 10 nucleotides long. This primer is erased by a special DNA repair enzyme (an RNAse H) that recognizes an RNA strand in an RNA/DNA helix and fragments it; this leaves gaps that are filled in by DNA polymerase and DNA ligase.Figure 5-14The reaction catalyzed by DNA ligaseThis enzyme seals a broken phosphodiester bond. As shown, DNA ligase uses a molecule of ATP to activate the 5 end at the nick (step 1) before forming the new bond (step 2). In this way, the energetically unfavorable nick-sealing reaction is driven by being coupled to the energetically favorable process of ATP hydrolysis.专门的蛋白质在复制叉前面打开DNA双螺旋为了DNA合成的推进,DNA双螺旋必须在复制叉前面被打开,这样新来的核苷酸才能和模板链形成碱基对。DNA双螺旋在正常条件下非常稳定,试管中必须要接近沸水的温度才能将两条链分开。只有当模板链已经从其互补链分离开来而暴露出来时, DNA聚合酶和DNA引物酶才能拷贝DNA。两种蛋白质DNA解旋酶和单链DNA结合蛋白,帮助打开双螺旋从而为DNA聚合酶提供合适的单链DNA模板来进行拷贝。DNA解旋酶首先和DNA单链结合,通过水解ATP周期性地改变其自身形状,从而进行机械运动,即推动自己沿DNA单链快速前移,当碰到双螺旋区时,继续前进,以1000个核苷酸对每秒的速度将双螺旋撬开(Figures 5-15 和5-16)。Figure 5-15 An assay used to test for DNA helicase enzymesA short DNA fragment is annealed to a long DNA single strand to form a region of DNA double helix. The double helix is melted as the helicase runs along the DNA single strand, releasing the short DNA fragment in a reaction that requires the presence of both the helicase protein and ATP. The rapid step-wise movement of the helicase is powered by its ATP hydrolysisFigure 5-16The structure of a DNA helicase(A) A schematic diagram of the protein as a hexameric ring. (B) Schematic diagram showing a DNA replication fork and helicase to scale. (C) Detailed structure of the bacteriophage T7 replicative helicase, as determined by x-ray diffraction. Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel this molecule along a DNA single strand that passes through the central hole. Red indicates bound ATP molecules in the structure.单链DNA结合(SSB)蛋白,非常合作地紧紧结合在暴露出来的DNA单链上,而不覆盖其要做模板的碱基。这些SSB蛋白不能直接打开一个长DNA螺旋,但是它们通过稳定被解开的单链构象来辅助解旋酶。另外,它们合作性的结合,使模板上的单链DNA区段“穿上外套“并伸直,从而阻止在单链DNA中极容易形成的短的发夹螺旋的形成(Figures 5-17 和5-18)。发夹螺旋阻碍DNA聚合酶催化的DNA合成。Figure 5-17The effect of single-strand DNA-binding proteins (SSB proteins) on the structure of single-stranded DNABecause each protein molecule prefers to bind next to a previously bound molecule, long rows of this protein form on a DNA single strand. This cooperative binding straightens out the DNA template and facilitates the DNA polymerization process. The “hairpin helices” shown in the bare, single-stranded DNA result from a chance matching of short regions of complementary nucleotide sequence; they are similar to the short helices that typically form in RNA molecules (see Figure 1-6).Figure 5-18The structure of the single-strand binding protein from humans bound to DNA(A) A front view of the two DNA binding domains of RPA protein, which cover a total of eight nucleotides. Note that the DNA bases remain exposed in this proteinDNA complex. (B) A diagram showing the three-dimensional structure, with the DNA strand (red) viewed end-on.移动的DNA聚合酶分子通过一个滑环与DNA保持连接DNA聚合酶分子本身只会合成一条短的核苷酸串,就从DNA模板上掉下来。这一快速从DNA分子分离的趋势,使得后随链上刚完成一个冈崎片段合成的DNA聚合酶分子被迅速回收,从而开始同一条链下一个冈崎片段的合成。然而,如果不是一个附属蛋白的调节钳作用,这一快速分离将会使DNA聚合酶合成长的DNA链非常困难。当DNA聚合酶移动时,这个钳子将其牢固地保持在DNA上,一旦遇到前方的双链区段时就释放之。这个钳子是如何在阻止聚合酶分离的同时而不阻碍其沿DNA分子快速移动的呢?X-线衍射确定的该钳蛋白的三维结构,揭示了它环绕DNA螺旋形成一个大环。环的一边结合DNA聚合酶的后面,当聚合酶移动时,整个环沿DNA自由滑动。这个钳环绕DNA的组装需要ATP水解。一种专门的蛋白质复合物,夹钳装载机,在引物-模板连接处装载夹钳时,水解ATP(Figure 5-19)。Figure 5-19The regulated sliding clamp that holds DNA polymerase on the DNA(A) The structure of the clamp protein from E. coli, as determined by x-ray crystallography, with a DNA helix added to indicate how the protein fits around DNA. (B) A similar protein is present in eucaryotes, as illustrated by this comparison of the E. coli sliding clamp (left) with the PCNA protein from humans (right). (C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA. In the simplified reaction shown here, the clamp loader dissociates into solution once the clamp has been assembled. At a true replication fork, the clamp loader remains close to the lagging-strand polymerase, ready to assemble a new clamp at the start of each new Okazaki fragment在前导链模板上,移动的DNA聚合酶与夹钳长时间仅仅结合。但是,在后随链上,每当聚合酶到达上一个冈崎片段的5端时,聚合酶就被释放了;然后这个聚合酶分子去和在下一个冈崎片段的RNA引物处组装的新夹钳结合(Figure 5-20)。Figure 5-20 A cycle of loading and unloading of DNA polymerase and the clamp protein on the lagging strandThe association of the clamp loader with the lagging-strand polymerase shown here is for illustrative purposes only; in reality, the clamp loader is carried along with the replication fork in a complex that includes both the leading-strand and lagging-strand DNA polymerases (see Figure 5-22).复制叉处的蛋白质相互协作形成一个复制机器进行DNA复制的大多数蛋白质都在一起形成一个大型的多酶复合物,沿DNA快速移动。这个复合物,就像一个由多个蛋白质部件组成并由三磷酸核苷水解提供动力的微型缝纫机。虽然这个复制复合物在大肠杆菌及其几种病毒中研究的最多, 真核生物中也有非常相似的复合物在运作,如下所示。The functions of the subunits of the replication machine are summarized in Figure 5-21. Two DNA polymerase molecules work at the fork, one on the leading strand and one on the lagging strand. The DNA helix is opened by a DNA polymerase molecule clamped on the leading strand, acting in concert with one or more DNA helicase molecules running along the strands in front of it. Helix opening is aided by cooperatively bound molecules of single-strand DNA-binding protein. Whereas the DNA polymerase molecule on the leading strand can operate in a continuous fashion, the DNA polymerase molecule on the lagging strand must restart at short intervals, using a short RNA primer made by a DNA primase molecule.Figure 5-21The proteins at a bacterial DNA replication forkThe major types of proteins that act at a DNA replication fork are illustrated, showing their approximate positions on the DNA.所有这些蛋白质组件紧密联系,大大提高了复制的效率。在原核生物中,DNA引物酶直接和DNA解旋酶相连,在后随链上形成一个叫引发体的单元。在DNA解旋酶的驱动下,引发体随复制叉移动,一边走一边合成RNA引物。相似地,在后随链上合成DNA的DNA聚合酶分子和其他蛋白质协作,移动,合成一系列冈崎片段。为了迁就这样的安排,后随链似乎以Figure 5-22所示的方式折叠起来。这一安排也促进了每次冈崎片段合成之后聚合酶夹钳蛋白的加载:夹钳加载机和后随链DNA聚合酶分子保持在一起,作为蛋白质机器的一部分,即使它们已从DNA上卸下。复制蛋白质因此被连在一起形成一个沿DNA快速移动的单个大型单元(总分子质量>106Da),使DNA在复制叉两边以一种协调高效的方式被合成。Figure 5-22A moving replication fork(A) This schematic diagram shows a current view of the arrangement of replication proteins at a replication fork when the fork is moving. The diagram in Figure 5-21 has been altered by folding the DNA on the lagging strand to bring the lagging-strand DNA polymerase molecule into a complex with the leading-strand DNA polymerase molecule. This folding process also brings the 3 end of each completed Okazaki fragment close to the start site for the next Okazaki fragment (compare with Figure 5-21). Because the lagging-strand DNA polymerase molecule remains bound to the rest of the replication proteins, it can be reused to synthesize successive Okazaki fragments. In this diagram, it is about to let go of its completed DNA fragment and move to the RNA primer that will be synthesized nearby, as required to start the next DNA fragment. Note that one daughter DNA helix extends toward the bottom right and the other toward the top left in this diagram. Additional proteins help to hold the different protein components of the fork together, enabling them to function as a well-coordinated protein machine. The actual protein complex is more compact than indicated, and the clamp loader is held in place by interactions not shown here. (B) An electron micrograph showing the replication machine from the bacteriophage T4 as it moves along a template synthesizing DNA behind it. (C) An interpretation of the micrograph is given in the sketch: note especially the DNA loop on the lagging strand. Apparently, the replication proteins became partly detached from the very front of the replication fork during the preparation of this sam