欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    人教版A版高中数学必修1课后习题及答案 三章全.doc

    • 资源ID:33514108       资源大小:2.90MB        全文页数:31页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人教版A版高中数学必修1课后习题及答案 三章全.doc

    如有侵权,请联系网站删除,仅供学习与交流人教版A版高中数学必修1课后习题及答案 三章全【精品文档】第 31 页高中数学必修1课后习题答案第一章 集合与函数概念11集合111集合的含义与表示练习(第5页)1(1)中国,美国,印度,英国;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲 (2) (3) (4), 2解:(1)因为方程的实数根为, 所以由方程的所有实数根组成的集合为; (2)因为小于的素数为, 所以由小于的所有素数组成的集合为; (3)由,得,即一次函数与的图象的交点为,所以一次函数与的图象的交点组成的集合为; (4)由,得, 所以不等式的解集为112集合间的基本关系练习(第7页)1解:按子集元素个数来分类,不取任何元素,得;取一个元素,得;取两个元素,得;取三个元素,得,即集合的所有子集为2(1) 是集合中的一个元素; (2) ;(3) 方程无实数根,;(4) (或) 是自然数集合的子集,也是真子集;(5) (或) ;(6) 方程两根为 3解:(1)因为,所以; (2)当时,;当时, 即是的真子集,; (3)因为与的最小公倍数是,所以113集合的基本运算练习(第11页)1解:,2解:方程的两根为, 方程的两根为, 得, 即3解:,4解:显然,则,11集合习题11 (第11页) A组1(1) 是有理数; (2) 是个自然数;(3) 是个无理数,不是有理数; (4) 是实数;(5) 是个整数; (6) 是个自然数2(1); (2); (3) 当时,;当时,;3解:(1)大于且小于的整数为,即为所求;(2)方程的两个实根为,即为所求;(3)由不等式,得,且,即为所求4解:(1)显然有,得,即, 得二次函数的函数值组成的集合为;(2)显然有,得反比例函数的自变量的值组成的集合为;(3)由不等式,得,即不等式的解集为5(1); ; ; ; ,即; (2); ; ; =;(3); 菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形6解:,即,得, 则,7解:, 则,而,则,8解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为 (1); (2)9解:同时满足菱形和矩形特征的是正方形,即, 平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即,10解:, 得,B组1 集合满足,则,即集合是集合的子集,得个子集2解:集合表示两条直线的交点的集合, 即,点显然在直线上,得3解:显然有集合, 当时,集合,则; 当时,集合,则; 当时,集合,则; 当,且,且时,集合,则4解:显然,由,得,即,而,得,而,即第一章 集合与函数概念12函数及其表示121函数的概念练习(第19页)1解:(1)要使原式有意义,则,即, 得该函数的定义域为; (2)要使原式有意义,则,即, 得该函数的定义域为2解:(1)由,得, 同理得,则,即; (2)由,得, 同理得, 则,即3解:(1)不相等,因为定义域不同,时间; (2)不相等,因为定义域不同, 122函数的表示法练习(第23页)1解:显然矩形的另一边长为, ,且, 即2解:图象(A)对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B)对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D)对应事件(1),返回家里的时刻,离开家的距离又为零; 图象(C)我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进3解:,图象如下所示4解:因为,所以与中元素相对应的中的元素是; 因为,所以与中的元素相对应的中元素是12函数及其表示习题12(第23页)1解:(1)要使原式有意义,则,即, 得该函数的定义域为; (2),都有意义, 即该函数的定义域为;(3)要使原式有意义,则,即且, 得该函数的定义域为;(4)要使原式有意义,则,即且, 得该函数的定义域为2解:(1)的定义域为,而的定义域为, 即两函数的定义域不同,得函数与不相等; (2)的定义域为,而的定义域为, 即两函数的定义域不同,得函数与不相等; (3)对于任何实数,都有,即这两函数的定义域相同,切对应法则相同,得函数与相等3解:(1) 定义域是,值域是; (2)定义域是,值域是; (3)定义域是,值域是; (4)定义域是,值域是4解:因为,所以, 即; 同理, 即; 即; 即5解:(1)当时, 即点不在的图象上; (2)当时, 即当时,求的值为; (3),得, 即6解:由,得是方程的两个实数根,即,得,即,得,即的值为7图象如下:8解:由矩形的面积为,即,得, 由对角线为,即,得, 由周长为,即,得, 另外,而,得,即9解:依题意,有,即, 显然,即,得, 得函数的定义域为和值域为10解:从到的映射共有个 分别是,组1解:(1)函数的定义域是; (2)函数的值域是; (3)当,或时,只有唯一的值与之对应2解:图象如下,(1)点和点不能在图象上;(2)省略3解: 图象如下4解:(1)驾驶小船的路程为,步行的路程为,得,即, (2)当时,第一章 集合与函数概念13函数的基本性质131单调性与最大(小)值练习(第32页)1答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低由此可见,并非是工人越多,生产效率就越高2解:图象如下 是递增区间,是递减区间,是递增区间,是递减区间3解:该函数在上是减函数,在上是增函数,在上是减函数,在上是增函数4证明:设,且, 因为, 即, 所以函数在上是减函数.5最小值132单调性与最大(小)值练习(第36页)1解:(1)对于函数,其定义域为,因为对定义域内每一个都有,所以函数为偶函数;(2)对于函数,其定义域为,因为对定义域内每一个都有,所以函数为奇函数;(3)对于函数,其定义域为,因为对定义域内每一个都有,所以函数为奇函数;(4)对于函数,其定义域为,因为对定义域内每一个都有,所以函数为偶函数.2解:是偶函数,其图象是关于轴对称的; 是奇函数,其图象是关于原点对称的习题1.3A组1解:(1) 函数在上递减;函数在上递增; (2) 函数在上递增;函数在上递减.2证明:(1)设,而, 由,得, 即,所以函数在上是减函数;(2)设,而, 由,得, 即,所以函数在上是增函数.3解:当时,一次函数在上是增函数; 当时,一次函数在上是减函数, 令,设, 而, 当时,即, 得一次函数在上是增函数;当时,即, 得一次函数在上是减函数.4解:自服药那一刻起,心率关于时间的一个可能的图象为5解:对于函数, 当时,(元), 即每辆车的月租金为元时,租赁公司最大月收益为元6解:当时,而当时, 即,而由已知函数是奇函数,得, 得,即, 所以函数的解析式为.B组1解:(1)二次函数的对称轴为, 则函数的单调区间为, 且函数在上为减函数,在上为增函数, 函数的单调区间为, 且函数在上为增函数; (2)当时, 因为函数在上为增函数, 所以2解:由矩形的宽为,得矩形的长为,设矩形的面积为, 则, 当时, 即宽才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是3判断在上是增函数,证明如下: 设,则, 因为函数在上是减函数,得, 又因为函数是偶函数,得, 所以在上是增函数复习参考题A组1解:(1)方程的解为,即集合; (2),且,则,即集合;(3)方程的解为,即集合2解:(1)由,得点到线段的两个端点的距离相等, 即表示的点组成线段的垂直平分线; (2)表示的点组成以定点为圆心,半径为的圆3解:集合表示的点组成线段的垂直平分线, 集合表示的点组成线段的垂直平分线, 得的点是线段的垂直平分线与线段的垂直平分线的交点,即的外心4解:显然集合,对于集合, 当时,集合,满足,即; 当时,集合,而,则,或, 得,或, 综上得:实数的值为,或5解:集合,即; 集合,即; 集合; 则.6解:(1)要使原式有意义,则,即, 得函数的定义域为; (2)要使原式有意义,则,即,且, 得函数的定义域为7解:(1)因为, 所以,得, 即; (2)因为, 所以, 即8证明:(1)因为, 所以, 即; (2)因为, 所以, 即.9解:该二次函数的对称轴为, 函数在上具有单调性,则,或,得,或,即实数的取值范围为,或10解:(1)令,而, 即函数是偶函数; (2)函数的图象关于轴对称; (3)函数在上是减函数; (4)函数在上是增函数B组1解:设同时参加田径和球类比赛的有人, 则,得, 只参加游泳一项比赛的有(人), 即同时参加田径和球类比赛的有人,只参加游泳一项比赛的有人2解:因为集合,且,所以3解:由,得, 集合里除去,得集合, 所以集合.4解:当时,得; 当时,得;5证明:(1)因为,得, 所以; (2)因为,得,因为,即,所以.6解:(1)函数在上也是减函数,证明如下: 设,则, 因为函数在上是减函数,则, 又因为函数是奇函数,则,即, 所以函数在上也是减函数; (2)函数在上是减函数,证明如下: 设,则, 因为函数在上是增函数,则, 又因为函数是偶函数,则,即, 所以函数在上是减函数7解:设某人的全月工资、薪金所得为元,应纳此项税款为元,则 由该人一月份应交纳此项税款为元,得, ,得, 所以该人当月的工资、薪金所得是元新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I)21指数函数练习(P54)1. a=,a=,a=,a= .2. (1)=x, (2)=(a+b), (3)=(m-n),(4)=(m-n)2,(5)=p3q,(6)=m=m.3. (1)()=()2=()3=;(2)2××=2×3×()×(3×22)=2×3=2×3=6;(3)aaa=a=a; (4)2x(x-2x)=x-4x=1-4x-1=1.练习(P58)1.如图 图2-1-2-142.(1)要使函数有意义,需x-20,即x2,所以函数y=3的定义域为x|x2;(2)要使函数有意义,需x0,即函数y=()的定义域是xx0.3.y=2x(xN*)习题2.1 A组(P59)1.(1)100;(2)-0.1;(3)4-;(4)x-y.2解:(1)=a0b0=1.(2)=a.(3)=m0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行.3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0;对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0;对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按键,最后按即可.答案:8.825 0.4.解:(1)aaa=a=a; (2)aa÷a=a=a;(3)(xy)12=x4y-9;(4)4ab÷(ab)=(×4)=-6ab0=-6a;(5)=;(6)(-2xy)(3xy)(-4xy)=-2×3×(-4)x=24y;(7)(2x+3y)(2x-3y)=(2x)2-(3y)2=4x-9y;(8)4x (-3xy)÷(-6xy)=2xy.点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-xR,即xR,所以函数y=23-x的定义域为R.(2)要使函数有意义,需2x+1R,即xR,所以函数y=32x+1的定义域为R.(3)要使函数有意义,需5xR,即xR,所以函数y=()5x的定义域为R.(4)要使函数有意义,需x0,所以函数y=0.7的定义域为x|x0.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x年的产量为y,一年内的产量是a(1+),两年内产量是a(1+)2,x年内的产量是a(1+)x,则y=a(1+)x(xN*,xm).点评:根据实际问题,归纳是关键,注意x的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y=3x,当x=0.8和0.7时的函数值;因为3>1,所以函数y=3x在R上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y=0.75x,当x=-0.1和0.1时的函数值;因为1>0.75,所以函数y=0.75x在R上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y=1.01x,当x=2.7和3.5时的函数值;因为1.01>1,所以函数y=1.01x在R上是增函数.而2.7<3.5,所以1.012.7<1.013.5.(4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y=0.99x,当x=3.3和4.5时的函数值;因为0.99<1,所以函数y=0.99x在R上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m,2n可以看成函数y=2x,当x=m和n时的函数值;因为2>1,所以函数y=2x在R上是增函数.因为2m<2n,所以m<n.(2)0.2m,0.2n可以看成函数y=0.2x,当x=m和n时的函数值;因为0.2<1,所以函数y=0.2x在R上是减函数.因为0.2m<0.2n,所以m>n.(3)am,an可以看成函数y=ax,当x=m和n时的函数值;因为0<a<1,所以函数y=ax在R上是减函数.因为am<an,所以m>n.(4)am,an可以看成函数y=ax,当x=m和n时的函数值;因为a>1,所以函数y=ax在R上是增函数.因为am>an,所以m>n.点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P与时间t的函数解析式为P=().当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=()=()90.002.答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2,因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t万年后,用一般的放射性探测器测不到碳14,那么()<0.001,解得t>5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的.B组1. 当0a1时,a2x-7a4x-12x-74x1x3;当a1时,a2x-7a4x-12x74x1x3.综上,当0a1时,不等式的解集是x|x3;当a1时,不等式的解集是x|x3.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用.解:(1)设y=x+x,那么y2=(x+x)2=x+x-1+2.由于x+x-1=3,所以y=.(2)设y=x2+x-2,那么y=(x+x-1)2-2.由于x+x-1=3,所以y=7.(3)设y=x2-x-2,那么y=(x+x-1)(x-x-1),而(x-x-1)2=x2-2+x-2=,所以y=±3.点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口.3.解:已知本金为a元.1期后的本利和为y1=a+a×r=a(1+r),2期后的本利和为y2=a(1+r)+a(1+r)×r=a(1+r)2,3期后的本利和为y3=a(1+r)3,x期后的本利和为y=a(1+r)x.将a=1 000,r=0.022 5,x=5代入上式得y=a(1+r)x=1 000×(1+0.022 5)5=1 000×1.022551118.答:本利和y随存期x变化的函数关系式为y=a(1+r)x,5期后的本利和约为1 118元.4.解:(1)因为y1=y2,所以a3x+1=a-2x.所以3x+1=-2x.所以x=.(2)因为y1>y2,所以a3x+1>a-2x.所以当a>1时,3x+1>-2x.所以x>.当0<a<1时,3x+1<-2x.所以x<.22对数函数练习(P64)1.(1); (2); (3); (4)2.(1); (2); (3); (4)3.(1)设,则,所以;(2)设,则,所以;(3)设,则,所以;(4)设,则,所以;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1);(2);(3);(4).2.(1);(2);(3); (4)3. (1); (2);(3);(4).4.(1)1; (2)1; (3)练习(P73)1.函数及的图象如右图所示.相同点:图象都在轴的右侧,都过点不同点:的图象是上升的,的图象是下降的关系:和的图象是关于轴对称的.2. (1); (2); (3); (4)3. (1) (2) (3) (4)习题2.2 A组(P74)1. (1); (2); (3); (4) (5) (6)2. (1) (2) (3) (4) (5) (6) 3. (1); (2) ; (3) ; (4); (5) ; (6) .4. (1); (2) ;(3) ; (4)5. (1); (2) ; (3) ; (4).6. 设年后我国的GDP在1999年的GDP的基础上翻两番,则 解得. 答:设年后我国的GDP在1999年的GDP的基础上翻两番.7. (1); (2) .8. (1); (2) ; (3) ; (4).9. 若火箭的最大速度,那么答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s.10. (1)当底数全大于1时,在的右侧,底数越大的图象越在下方. 所以,对应函数,对应函数,对应函数. (2)略. (3)与原函数关于轴对称.11. (1) (2)12. (1)令,则,解得. 答:鲑鱼的游速为1.5米/秒. (2)令,则,解得. 答:一条鱼静止时的耗氧量为100个单位.B组1. 由得:,于是2. 当时,恒成立; 当时,由,得,所以. 综上所述:实数的取值范围是或3. (1)当 W/m2时,; (2)当 W/m2时, 答:常人听觉的声强级范围为.4. (1)由,得,函数的定义域为 (2)根据(1)知:函数的定义域为 函数的定义域关于原点对称又 是上的偶函数.5. (1),; (2),.习题2.3 A组(P79)1.函数y=是幂函数.2.解析:设幂函数的解析式为f(x)=x,因为点(2,)在图象上,所以=2.所以=,即幂函数的解析式为f(x)=x,x0.3.(1)因为流量速率v与管道半径r的四次方成正比,所以v=k·r4;(2)把r=3,v=400代入v=k·r4中,得k=,即v=r4;(3)把r=5代入v=r4,得v=×543 086(cm3/s),即r=5 cm时,该气体的流量速率为3 086 cm3/s.第二章 复习参考题A组(P82)1.(1)11; (2); (3); (4).2.(1)原式=;(2)原式=.3.(1)因为lg2=a,lg3=b,log125=,所以log125=.(2)因为,4.(1)(-,)(,+);(2)0,+).5.(,1)(1,+);(2)(-,2);(3)(-,1)(1,+).6.(1)因为log67>log66=1,所以log67>1.又因为log76<log77=1,所以log76<1.所以log67>log76.(2)因为log3>log33=1,所以log3>1.又因为log20.8<0,所以log3>log20.8.7.证明:(1)因为f(x)=3x,所以f(x)·f(y)=3x×3y=3x+y.又因为f(x+y)=3x+y,所以f(x)·f(y)=f(x+y).(2)因为f(x)=3x,所以f(x)÷f(y)=3x÷3y=3x-y.又因为f(x-y)=3x-y,所以f(x)÷f(y)=f(x-y).8.证明:因为f(x)=lg,a、b(-1,1),所以f(a)+f(b)=lg=lg,f()=lg()=lg=lg.所以f(a)+f(b)=f().9.(1)设保鲜时间y关于储藏温度x的函数解析式为y=k·ax(a>0,且a1).因为点(0,192)、(22,42)在函数图象上,所以解得所以y=192×0.93x,即所求函数解析式为y=192×0.93x.(2)当x=30 时,y22(小时);当x=16 时,y60(小时),即温度在30 和16 的保鲜时间约为22小时和60小时.(3)图象如图:图2-210.解析:设所求幂函数的解析式为f(x)=x,因为f(x)的图象过点(2,),所以=2,即2=2.所以=.所以f(x)=x(x>0).图略,f(x)为非奇非偶函数;同时它在(0,+)上是减函数.B组1.A2.因为2a=5b=10,所以a=log210,b=log510,所以+=+=lg2+lg5=lg10=1.3.(1)f(x)=a在x(-,+)上是增函数.证明:任取x1,x2(-,+),且x1<x2.f(x1)-f(x2)=a-a+ =-=.因为x1,x2(-,+),所以又因为x1<x2,所以即<0.所以f(x1)-f(x2)<0,即f(x1)<f(x2).所以函数f(x)=a在(-,+)上是增函数.(2)假设存在实数a使f(x)为奇函数,则f(-x)+f(x)=0,即a+a=0a=+=+=1,即存在实数a=1使f(x)=为奇函数.4.证明:(1)因为f(x)=,g(x)=,所以g(x)2-f(x)2=g(x)+f(x)g(x)-f(x)=ex·e-x=ex-x=e0=1,即原式得证.(2)因为f(x)=,g(x)=,所以f(2x)=,2f(x)·g(x)=2··=.所以f(2x)=2f(x)·g(x).(3)因为f(x)=,g(x)=,所以g(2x)=,g(x)2+f(x)2=()2+()2所以g(2x)=f(x)2+g(x)2.5.由题意可知,1=62,0=15,当t=1时,=52,于是52=15+(62-15)e-k,解得k0.24,那么=15+47e-0.24t. 所以,当=42时,t2.3;当=32时,t4.2.答:开始冷却2.3和4.2小时后,物体的温度分别为42 和32 .物体不会冷却到12 .6.(1)由P=P0e-kt可知,当t=0时,P=P0;当t=5时,P=(1-10%)P0.于是有(1-10%)P0=P0e-5k,解得k=ln0.9,那么P=P0e.所以,当t=10时,P=P0e=P0eln0.81=81%P0.答:10小时后还剩81%的污染物.(2)当P=50%P0时,有50%P0=P0e,解得t=33.答:污染减少50%需要花大约33h.(3)其图象大致如下:图2-3新课程标准数学必修1第三章课后习题解答第三章 函数的应用31函数与方程练习(P88)1.(1)令f(x)=-x2+3x+5,作出函数f(x)的图象(图3-1-2-7(1),它与x轴有两个交点,所以方程-x2+3x+5=0有两个不相等的实数根.(2)2x(x-2)=-3可化为2x2-4x+3=0,令f(x)=2x2-4x+3,作出函数f(x)的图象(图3-1-2-7(2),它与x轴没有交点,所以方程2x(x-2)=-3无实数根.(3)x2=4x-4可化为x2-4x+4=0,令f(x)=x2-4x+4,作出函数f(x)的图象(图3-1-2-7(3),它与x轴只有一个交点(相切),所以方程x2=4x-4有两个相等的实数根.(4)5x2+2x=3x2+5可化为2x2+2x-5=0,令f(x)=2x2+2x-5,作出函数f(x)的图象(图3-1-2-7(4),它与x轴有两个交点,所以方程5x2+2x=3x2+5有两个不相等的实数根.图3-1-2-72.(1)作出函数图象(图3-1-2-8(1),因为f(1)=1>0,f(1.5)=-2.875<0,所以f(x)=-x3-3x+5在区间(1,1.5)上有一个零点.又因为f(x)是(-,+)上的减函数,所以f(x)=-x3-3x+5在区间(1,1.5)上有且只有一个零点.(2)作出函数图象(图3-1-2-8(2),因为f(3)<0,f(4)>0,所以f(x)=2x·ln(x-2)-3在区间(3,4)上有一个零点.又因为f(x)=2x·ln(x-2)-3在(2,+)上是增函数,所以f(x)在(3,4)上有且仅有一个零点.(3)作出函数图象(图3-1-2-8(3),因为f(0)<0,f(1)>0,所以f(x)=ex-1+4x-4在区间(0,1)上有一个零点.又因为f(x)=ex-1+4x-4在(-,+)上是增函数,所以f(x)在(0,1)上有且仅有一个零点.(4)作出函数图象(图3-1-2-8(4),因为f(-4)<0,f(-3)>0,f(-2)<0,f(2)<0,f(3)>0,所以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.图3-1-2-8练习(P91)1.由题设可知f(0)=-1.4<0,f(1)=1.6>0,于是f(0)·f(1)<0,所以函数f(x)在区间(0,1)内有一个零点x0.下面用二分法求函数f(x)=x3+1.1x2+0.9x-1.4在区间(0,1)内的零点.取区间(0,1)的中点x1=0.5,用计算器可算得f(0.5)=-0.55.因为f(0.5)·f(1)<0,所以x0(0.5,1).再取区间(0.5,1)的中点x2=0.75,用计算器可算得f(0.75)0.32.因为f(0.5)·f(0.75)<0,所以x0(0.5,0.75).同理,可得x0(0.625,0.75),x0(0.625,0.687 5),x0(0.656 25,0.687 5).由于|0.687 5-0.656 25|=0.031 25<0.1,所以原方程的近似解可取为0.656 25.2.原方程可化为x+lgx-3=0,令f(x)=x+lgx-3,用计算器可算得f(2)-0.70,f(3)0.48.于是f(2)·f(3)<0,所以这个方程在区间(2,3)内有一个解x0.下面用二分法求方程x=3-lgx在区间(2,3)的近似解.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)-0.10.因为f(2.5)·f(3)<0,所以x0(2.5,3).再取区间(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)0.19.因为f(2.5)·f(2.75)<0,所以x0(2.5,2.75).同理,可得x0(2.5,2.625),x0(2.562 5,2.625),x0(2.562 5,2.593 75),x0(2.578 125,2.593 75),x0(2.585 937 5,2.59 375).由于|2.585 937 5-2.593 75|=0.007 812 5<0.01,所以原方程的近似解可取为2.593 75.习题3.1 A组(P92)1.A,C 点评:需了解二分法求函数的近似零点的条件.2.由x,f(x)的对应值表可得f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,又根据“如果函数y=f(x)在区间a,b上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.”可知函数f(x)分别在区间(2,3),(3,4),(4,5)内有零点.3.原方程即(x+1)(x-2)(x-3)-1=0,令f(x)=(x+1)(x-2)(x-3)-1,可算得f(-1)=-1,f(0)=5.于是f(-1)·f(0)<0,所以这个方程在区间(-1,0)内有一个解.下面用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)=3.375.因为f(-1)·f(-0.5)<0,所以x0(-1,-0.5).再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)1.58.因为f(-1)·f(-0.75)<0,所以x0(-1,-0.75).同理,可得x0(-1,

    注意事项

    本文(人教版A版高中数学必修1课后习题及答案 三章全.doc)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开