2022年黑龙江省齐齐哈尔市中考数学试题及答案解析.docx
2022年黑龙江省齐齐哈尔市中考数学试卷一、选择题(本大题共10小题,共30.0分)1. 实数2022的倒数是( )A. 2022B. 2022C. 12022D. 120222. 下面四个交通标志中,是中心对称图形的是( )A. B. C. D. 3. 下列计算正确的是( )A. ab2÷ab=bB. (ab)2=a2b2C. 2m4+3m4=5m8D. (2a)3=6a34. 数据1,2,3,4,5,x存在唯一众数,且该组数据的平均数等于众数,则x的值为( )A. 2B. 3C. 4D. 55. 由一些大小相同的小正方体搭成的几何体的主视图、左视图和俯视图都是如图所示的“田”字形,则搭成该几何体的小正方体的个数最少为( )A. 4个B. 5个C. 6个D. 7个6. 在单词statistics(统计学)中任意选择一个字母,字母为“s”的概率是( )A. 110B. 15C. 310D. 257. 如图所示,直线a/b,点A在直线a上,点B在直线b上,AC=BC,C=120°,1=43°,则2的度数为( )A. 57°B. 63°C. 67°D. 73°8. 如图所示(图中各角均为直角),动点P从点A出发,以每秒1个单位长度的速度沿ABCDE路线匀速运动,AFP的面积y随点P运动的时间x(秒)之间的函数关系图象如图所示,下列说法正确的是( )A. AF=5B. AB=4C. DE=3D. EF=89. 端午节前夕,某食品加工厂准备将生产的粽子装入A、B两种食品盒中,A种食品盒每盒装8个粽子,B种食品盒每盒装10个粽子,若现将200个粽子分别装入A、B两种食品盒中(两种食品盒均要使用并且装满),则不同的分装方式有( )A. 2种B. 3种C. 4种D. 5种10. 如图,二次函数y=ax2+bx+c(a0)的图象与y轴的交点在(0,1)与(0,2)之间,对称轴为x=1,函数最大值为4,结合图象给出下列结论:b=2a;3<a<2;4acb2<0;若关于x的一元二次方程ax2+bx+a=m4(a0)有两个不相等的实数根,则m>4;当x<0时,y随x的增大而减小其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个二、填空题(本大题共7小题,共21.0分)11. 据统计,2022届高校毕业生规模预计首次突破千万,约为10760000人,总量和增量均为近年之最,将10760000用科学记数法表示为_12. 如图,在四边形ABCD中,ACBD,垂足为O,AB/CD,要使四边形ABCD为菱形,应添加的条件是_.(只需写出一个条件即可)13. 圆锥的母线长为5cm,高为4cm,则该圆锥侧面展开图扇形的圆心角为_°.14. 若关于x的分式方程1x2+2x+2=x+2mx24的解大于1,则m的取值范围是_15. 如图,点A是反比例函数y=kx(x<0)图象上一点,过点A作ABy轴于点D,且点D为线段AB的中点若点C为x轴上任意一点,且ABC的面积为4,则k=_16. 在ABC中,AB=36,AC=6,B=45°,则BC=_17. 如图,直线l:y=33x+3与x轴相交于点A,与y轴相交于点B,过点B作BC1l交x轴于点C1,过点C1作B1C1x轴交l于点B1,过点B1作B1C2l交x轴于点C2,过点C2作B2C2x轴交l于点B2,按照如此规律操作下去,则点B2022的纵坐标是_三、解答题(本大题共7小题,共69.0分)18. (1)计算:(31)0+(13)2+|32|+tan60°;(2)因式分解:x3y6x2y+9xy19. 解方程:(2x+3)2=(3x+2)220. “双减”政策实施后,某校为了解本校学生每天课后进行体育锻炼的时间情况,在5月份某天随机抽取了若干名学生进行调查,现将调查结果绘制成两幅尚不完整的统计图表请根据统计图表提供的信息,回答下列问题:(1)表中m=_,n=_,p=_;(2)将条形图补充完整;(3)若制成扇形图,则C组所对应的圆心角为_°;(4)若该校学生有2000人,请根据以上调查结果估计:该校每天课后进行体育锻炼的时间超过60分钟的学生约有多少人?组别锻炼时间(分钟)频数(人)百分比A0x305025%B30<x60m40%C60<x9040pDx>90n15%21. 如图,在ABC中,AB=AC,以AB为直径作O,AC与O交于点D,BC与O交于点E,过点C作CF/AB,且CF=CD,连接BF(1)求证:BF是O的切线;(2)若BAC=45°,AD=4,求图中阴影部分的面积22. 在一条笔直的公路上有A、B两地,甲、乙二人同时出发,甲从A地步行匀速前往B地,到达B地后,立刻以原速度沿原路返回A地乙从B地步行匀速前往A地(甲、乙二人到达A地后均停止运动),甲、乙二人之间的距离y(米)与出发时间x(分钟)之间的函数关系如图所示,请结合图象解答下列问题:(1)A、B两地之间的距离是_米,乙的步行速度是_米/分;(2)图中a=_,b=_,c=_;(3)求线段MN的函数解析式;(4)在乙运动的过程中,何时两人相距80米?(直接写出答案即可)23. 综合与实践数学是以数量关系和空间形式为主要研究对象的科学,数学实践活动有利于我们在图形运动变化的过程中去发现其中的位置关系和数量关系,让我们在学习与探索中发现数学的美,体会数学实践活动带给我们的乐趣转一转:如图,在矩形ABCD中,点E、F、G分别为边BC、AB、AD的中点,连接EF、DF,H为DF的中点,连接GH.将BEF绕点B旋转,线段DF、GH和CE的位置和长度也随之变化当BEF绕点B顺时针旋转90°时,请解决下列问题:(1)图中,AB=BC,此时点E落在AB的延长线上,点F落在线段BC上,连接AF,猜想GH与CE之间的数量关系,并证明你的猜想;(2)图中,AB=2,BC=3,则GHCE=_;(3)当AB=m,BC=n时,GHCE=_剪一剪、折一折:(4)在(2)的条件下,连接图中矩形的对角线AC,并沿对角线AC剪开,得ABC(如图).点M、N分别在AC、BC上,连接MN,将CMN沿MN翻折,使点C的对应点P落在AB的延长线上,若PM平分APN,则CM长为_24. 综合与探究如图,某一次函数与二次函数y=x2+mx+n的图象交点为A(1,0),B(4,5)(1)求抛物线的解析式;(2)点C为抛物线对称轴上一动点,当AC与BC的和最小时,点C的坐标为_;(3)点D为抛物线位于线段AB下方图象上一动点,过点D作DEx轴,交线段AB于点E,求线段DE长度的最大值;(4)在(2)条件下,点M为y轴上一点,点F为直线AB上一点,点N为平面直角坐标系内一点,若以点C,M,F,N为顶点的四边形是正方形,请直接写出点N的坐标答案解析1.【答案】D 【解析】解:由于2022×(12022)=1,所以2022的倒数是12022,故选:D根据倒数的定义进行计算即可本题考查倒数,掌握“乘积为1的两个数互为倒数”是正确解答的关键2.【答案】A 【解析】解:选项B、C、D均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形,选项A能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形,故选:A根据中心对称图形的定义进行判断,即可得出答案把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形3.【答案】A 【解析】解:A、原式=b,符合题意;B、原式=a22ab+b2,不符合题意;C、原式=5m4,不符合题意;D、原式=8a3,不符合题意故选:A各式计算得到结果,即可作出判断此题考查了整式的除法,合并同类项,幂的乘方与积的乘方,以及完全平方公式,熟练掌握公式及法则是解本题的关键4.【答案】B 【解析】解:数据1,2,3,4,5的平均数是1+2+3+4+55=3,数据1,2,3,4,5,x存在唯一众数,且该组数据的平均数等于众数,x的值为3故选:B根据众数和平均数的定义解答即可此题考查了众数与平均数的知识众数是这组数据中出现次数最多的数5.【答案】C 【解析】解:由俯视图知最下面一层一定有四个小正方体,由主视图和左视图知上面一层至少有处在对角的位置上的两个小正方体,故搭成该几何体的小正方体的个数最少为6个,故选:C由俯视图知最下面一层一定有四个小正方体,由主视图和左视图知上面一层至少有处在对角的位置上的两个小正方体,故可得出结论本题主要考查三视图的知识,熟练根据三视图的知识判断小正方体的个数是解题的关键6.【答案】C 【解析】解:在单词statistics(统计学)中任意选择一个字母一共有10种可能性,其中字母为“s”的可能性有3种,任意选择一个字母,字母为“s”的概率是310,故选:C根据题意,可以写出任意选择一个字母的所有可能性和选择的字母是s的可能性,从而可以求出相应的概率本题考查概率公式,解答本题的关键是明确题意,求出相应的概率7.【答案】D 【解析】解:AC=BC,ACB=120°,CBA=CAB=180°ACB2=30°,a/b,2=CBA+1=30°+43°=73°故选:D由AC=BC,C=120°,可得CBA=30°,再由a/b,可得2=CBA+1=73°本题主要考查等腰三角形的性质,平行线的性质8.【答案】D 【解析】解:由图的第一段折线可知:点P经过4秒到达点B处,此时的三角形的面积为12,动点P从点A出发,以每秒1个单位长度的速度沿ABCDE路线匀速运动,AB=412×AFAB=12,AF=6,A选项不正确,B选项也不正确;由图的第二段折线可知:点P再经过2秒到达点C处,BC=2,由图的第三段折线可知:点P再经过6秒到达点D处,CD=6,由图的第四段折线可知:点P再经过4秒到达点E处,DE=4C选项不正确;图中各角均为直角,EF=AB+CD=2+6=8,D选项的结论正确,故选:D利用图中的信息和三角形的面积公式分别求得图中的线段,由此选择出正确选项即可本题主要考查了动点问题的函数图象,三角形的面积,结合图形与图象求出图形中的线段的长度是解题的关键9.【答案】C 【解析】解:设A种食品盒x个,B种食品盒y个,根据题意得:8x+10y=200,y=200.8x,方程的正整数解为:516,1012,158,204故选:C根据题意列方程,求其正整数解本题考查二元一次方程的应用,并求其特殊解的问题10.【答案】B 【解析】解:抛物线对称轴为直线x=b2a=1,b=2a,正确抛物线经过(1,4),ab+c=a+c=4,a=c4,抛物线与y轴交点在(0,1)与(0,2)之间,1<c<2,3<a<2,正确抛物线与x轴有2个交点,b24ac>0,即4acb2<0,正确a=c4,ax2+bx+a=m4可整理为ax2+bx+c=m,抛物线开口向下,顶点坐标为(1,4),m<4时,抛物线与直线y=m有两个不同交点,错误由图象可得x<1时y随x增大而增大,错误故选:B由抛物线对称轴为直线x=1可判断,由抛物线顶点坐标可得a与c的关系,由抛物线与y轴交点位置可判断c的取值范围,从而判断,由抛物线与x轴交点个数可判断,由抛物线与直线y=m交点个数判断,由图象可得x<1时,y随x增大而增大,从而判断本题考查二次函数图象与系数的关系,解题关键是掌握二次函数与方程及不等式的关系11.【答案】1.076×107 【解析】解:10760000=1.076×107故答案为:1.076×107根据科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法【科学记数法形式:a×10n,其中1a<10,n为正整数】计算即可得出答案本题主要考查了科学记数法表示较大的数,熟练掌握科学记数法表示较大的数的方法进行求解是解决本题的关键12.【答案】AB=CD(答案不唯一) 【解析】解:添加的条件是AB=CD,理由如下:AB/CD,AB=CD,四边形ABCD是平行四边形,又ACBD,平行四边形ABCD是菱形,故答案为:AB=CD(答案不唯一)由AB/CD,AB=CD得四边形ABCD是平行四边形,再由菱形的判定即可得出结论本题考查了菱形的判定、平行四边形的判定与性质等知识,熟练掌握菱形的判定和平行四边形的判定与性质是解题的关键13.【答案】216 【解析】解:圆锥的底面圆的半径为:5242=3,设圆锥侧面展开图的圆心角为n°,则2×3=n×5180,n=216,圆锥侧面展开图的圆心角为216°,故答案为:216先利用勾股定理求出圆锥的底面圆半径,再利用侧面扇形的弧长等于圆锥底面圆的周长列方程即可求出答案本题主要考查圆锥的计算,解题关键是熟知圆锥的侧面展开图扇形的弧长等于底面圆的周长14.【答案】m>0且m1 【解析】解:1x2+2x+2=x+2m(x+2)(x2),给分式方程两边同时乘以最简公分母(x+2)(x2),得(x+2)+2(x2)=x+2m,去括号,得x+2+2x4=x+2m,解方程,得x=m+1,检验:当m+12,m+1=2,即m1且m3时,x=m+1是原分式方程的解,根据题意可得,m+1>1,m>0且m1故答案为:m>0且m1先解分式方程,再应用分式方程的解进行计算即可得出答案本题主要考查了分式方程的解,熟练掌握分式的解的定义进行求解是解决本题的关键15.【答案】4 【解析】解:连接OA,如图所示: ABy轴,AB/OC,D是AB的中点,SABC=2SADO,SADO=|k|2,ABC的面积为4,|k|=4,根据图象可知,k<0,k=4故答案为:4连接OA,则有SABC=2SADO,根据k的几何意义,可得|k|2=2,根据图象可知k<0,即可求出k的值本题考查了反比例函数k的几何意义,由三角形面积求k的值注意符号是关键16.【答案】33+3或333 【解析】解:当ABC为锐角三角形时,过点A作ADBC于点D,如图, AB=36,B=45°,AD=BD=ABsin45°=33,CD=AC2AD2=3,BC=BD+CD=33+3;当ABC为钝角三角形时,过点A作ADBC交BC延长线于点D,如图, AB=36,B=45°,AD=BD=ABsin45°=33,CD=AC2AD2=3,BC=BDCD=333;综上,BC的长为33+3或333利用分类讨论的思想方法,画出图形,过点A作ADBC于点D,利用勾股定理解答即可本题主要考查了解直角三角形,勾股定理,利用分类讨论的思想方法,画出图形解答是解题的关键17.【答案】(43)20223 【解析】解:y=33x+3与x轴相交于点A,与y轴相交于点B,当x=0时,y=3,当y=0时,x=3,A(3,0),B(0,3),OA=3,OB=3,tanBAO=33,BAO=30°,BC1l,C1BO=BAO=30°,BC1=BOcos30=332=2,B1C1x轴,B1C1B=30°,B1C1=BC1cos30=232=433,同理可得,B2C2=43B1C1=(43)23,依此规律,可得BnCn=(43)n3,当n=2022时,B2022C2022=(43)20223,故答案为:(43)20223首先利用函数解析式可得点A、B的坐标,从而得出BAO=30°,根据三角函数的定义知BC1=BOcos30=332=2,B1C1=BC1cos30=232=433,同理可得,B2C2=43B1C1=(43)23,依此可得规律本题主要考查了一次函数的性质,特殊角的三角函数值,通过计算B1C1、B2C2的长,得出计算的规律是解决问题的关键18.【答案】解:原式=1+1(13)2+(23)+3 =1+9+23+3 =12;(2)原式=xy(x26x+9) =xy(x3)2 【解析】(1)应用特殊角三角函数值,零指数幂,负整数指数幂及绝对值进行计算即可得出答案;(2)应用提公因式法与公式法的综合运用进行因式分解即可得出答案本题主要考查了特殊角三角函数值,零指数幂,负整数指数幂,提公因式法与公式法的综合运用,熟练掌握特殊角三角函数值,零指数幂,负整数指数幂,提公因式法与公式法的综合运用进行因式分解是解决本题的关键19.【答案】解:方程:(2x+3)2=(3x+2)2,开方得:2x+3=3x+2或2x+3=3x2,解得:x1=1,x2=1 【解析】方程开方转化为一元一次方程,求出解即可此题考查了解一元二次方程直接开平方法,熟练掌握方程的解法是解本题的关键20.【答案】80 30 20% 72 【解析】解:(1)由题意可知,样本容量为50÷25%=200,故m=200×40%=80,n=200×15%=30,p=40200×100%=20%,故答案为:80;30;20%;(2)将条形图补充完整如下: (3)C组所对应的圆心角为360°×40200=72°,故答案为:72;(4)2000×(20%+15%)=700(人),答:校每天课后进行体育锻炼的时间超过60分钟的学生约有700人(1)用A组的频数除以25%即可得出总数,再根据“频率=频数除以总数”可得m、n、p的值;(2)根据(1)的结论即可将条形图补充完整;(3)用360°乘p的值即可;(4)利用样本估计总体即可本题主要考查了频数分布表,频数分布直方图,用样本估计总体解题的关键是读懂统计图,能从频数分布表,扇形统计图中得到准确的信息21.【答案】(1)证明:如图1,连接BD, AB是直径,ADB=BDC=90°,AB=AC,ABC=ACB,AB/CF,ABC=FCB,ACB=FCB,在DCB和FCB中,CD=CFDCB=FCBCB=CB,DCBFCB(SAS),F=CDB=90°,AB/CF,ABF+F=180°,ABF=90°,即ABBF,AB为直径,BF是O的切线;(2)解:如图2,连接BD、OE交于点M,连接AE, AB是直径,AEBC,ADBD,BAC=45°,AD=4,ABD是等腰直角三角形,BD=AD=4,AB=AD2+BD2=42+42=42,OA=OB=22,OE是ADB的中位线,OE/AD,BOE=BAC=45°,OEBD,BMBD=OBAB=12,BM=12BD=12×4=2,S阴影部分=S扇形BOESBOE =45××(22)236012×22×2 =22 【解析】(1)连接BD,由圆周角定理得出ADB=BDC=90°,由等腰三角形的性质得出ABC=ACB,由平行线的性质得出ABC=FCB,进而得出ACB=FCB,得出DCBFCB,得出F=CDB=90°,由平行线的性质得出ABF+F=180°,继而得出ABBF,即可证明BF是O的切线;(2)连接BD、OE交于点M,连接AE,由圆周角定理得出AEBC,ADBD,由BAC=45°,AD=4,得出ABD是等腰直角三角形,BD=AD=4,AB=42,进而得出OA=OB=22,由三角形中位线的性质得出OE/AD,继而得出BOE=BAC=45°,OEBD,BMBD=OBAB=12,求出BM=2,利用S阴影部分=S扇形BOESBOE,将有关数据代入计算,即可得出答案本题考查了切线的判定与性质,平行线的性质,扇形面积的计算,掌握平行线的性质,全等三角形的判定与性质,切线的判定与性质,圆周角定理,等腰直角三角形的判定与性质,勾股定理,三角形中位线的性质,平行线分线段成比例定理,扇形的面积公式,三角形面积公式等知识是解决问题的关键22.【答案】1200 60 900 800 15 【解析】解:(1)由图象知:当x=0时,y=1200,A、B两地之间的距离是1200米;由图象知:乙经过20分钟到达A,乙的速度为120020=60(米/分)故答案为:1200;60;(2)由图象知:当x=607时,y=0,甲乙二人的速度和为:1200÷607=140(米/分),设甲的速度为x米/分,则乙的速度为(140x)米/分,140x=60,x=80甲的速度为80(米/分),点M的实际意义是经过c分钟甲到达B地,c=1200÷80=15(分钟),a=60×15=900(米)点M的实际意义是经过20分钟乙到达A地,b=900(8060)×5=800(米);故答案为:900;800;15;(3)由题意得:M(15,900),N(20,800),设直线MN的解析式为y=kx+n,15k+n=90020k+n=800,解得:k=20n=1200,直线MN的解析式为y=20x+1200;(4)在乙运动的过程中,二人出发后第8分钟和第647分钟两人相距80米理由:相遇前两人相距80米时,二人的所走路程和为120080=1120(米),1120÷140=8(分钟);相遇后两人相距80米时,二人的所走路程和为1200+80=1280(米),1280÷140=647(分钟)综上,在乙运动的过程中,二人出发后第8分钟和第647分钟两人相距80米(1)利用函数图象中的信息直接得到A、B两地之间的距离,再利用函数图象中的信息即可求得乙的步行速度;(2)利用(1)的结论通过计算即可得出结论;(3)利用待定系数法解答即可;(4)利用分类讨论的方法,分别求得相遇前和相遇后两人相距80米时的时间即可求得结论本题主要考查了一次函数的图象和性质,待定系数法,一次函数图象上点的坐标的特征,明确函数图象上点的坐标的实际意义是解题的关键23.【答案】13 m2n 3135 【解析】解:转一转:(1)结论:GH=12CE理由:如图中, 四边形ABCD是矩形,ABC=CBE=90°,AB=CB,BF=12AB,BE=12BC,BF=BE,在ABF和CBE中,AB=CBABF=CBEBF=BE,ABFCBE(SAS),AF=CE,DG=GA,DH=HF,GH=12AF=12CE;(2)如图中,连接AF BF=12AB,BE=12BC,ABBF=BCBE, ABBC=BFBE,ABF=CBE,ABFCBE,AFCE=ABBC=23,AF=23CE,AG=DG,DH=HF,GH=12AF=13CE,GHCE=13故答案为:13(3)当AB=m,BC=n时,同法可证ABFCBE,AFCE=ABBC=mn,AF=mnCE,AG=DG,DH=HF,GH=12AF=m2nCE,GHCE=m2n故答案为:m2n剪一剪、折一折:如图4中,过点M作MTAB于点T,MRCB于点R PM平分APN,MPT=MPN,由翻折的性质可知MP=MC,C=MPN,MPT=C,MTP=MRC=90°,PTMCRM(AAS),MT=MR,BM平分ABC,MBT=MBR=45°,TB=TM,BR=RM,设TM=TB=x,12ABBC=12ABMT+12BCMR,12×2×3=12x(2+3),x=65,BR=MR=65,CR=BCBR=365=95,CM=CR2+MR2=(95)2+(65)2=3135故答案为:3135转一转:(1)证明ABFCBE(SAS),推出AF=CE,再利用三角形中位线定理求解;(2)证明ABFCBE,推出AFCE=ABBC=23,推出AF=23CE,即可解决问题;(3)由ABFCBE,推出AFCE=ABBC=mn,推出AF=mnCE,可得结论;剪一剪、折一折:如图4中,过点M作MTAB于点T,MRCB于点R.证明PTMCRM(AAS),推出MT=MR,推出BM平分ABC,推出MBT=MBR=45°,推出TB=TM,BR=RM,设TM=TB=x,利用面积法构建方程求出x即可本题属于四边形综合题,考查了矩形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题24.【答案】(1,2) 【解析】解:(1)将A(1,0),B(4,5)代入y=x2+mx+n得,1m+n=016+4m+n=5,m=2n=3,抛物线的解析式为y=x22x3;(2)设直线AB的函数解析式为y=kx+b,k+b=04k+b=5,k=1b=1,直线AB的解析式为y=x+1,AC+BCAB,当点A、B、C三点共线时,AC+BC的最小值为AB的长,抛物线y=x22x3的对称轴为x=1,当x=1时,y=2,C(1,2),故答案为:(1,2);(3)设D(a,a22a3),则E(a,a+1), DE=(a+1)(a22a3)=a2+3a+4(1<a<4),当a=32时,DE的最大值为254;(4)当CF为对角线时,如图, 此时四边形CMFN是正方形,N(1,1),当CF为边时,若点F在C的上方, 此时MFC=45°,MF/x轴,MCF是等腰直角三角形,MF=CN=2,N(1,4),当点F在点C的下方时,如图,四边形CFNM是正方形, 同理可得N(1,2),当点F在点C的下方时,如图,四边形CFMN是正方形, 同理可得N(12,52),综上:N(1,1)或(1,4)或(1,2)或(12,52).(1)将A(1,0),B(4,5)代入y=x2+mx+n,解方程即可得出答案;(2)根据两点之间,线段最短,可知当点A、B、C三点共线时,AC+BC的最小值为AB的长,求出直线AB的解析式,即可得出点C的坐标;(3)设D(a,a22a3),则E(a,a+1),表示出DE的长度,利用二次函数的性质可得答案;(4)分CF为对角线和边,分别画出图形,利用正方形的性质可得答案本题是二次函数综合题,主要考查了待定系数法求函数解析式,两点之间、线段最短,正方形的性质等知识,利用分类思想、数形结合思想是解决问题(4)的关键第25页,共25页