《解直角三角形》教学设计.doc
-作者xxxx-日期xxxx解直角三角形教学设计【精品文档】解直角三角形教学设计 彬县公刘中学 郭江平一、教学内容分析本课时的内容是解直角三角形,为了引起学生对教学内容的兴趣,所以在本课时的开头引入了一个实际问题,从而自然过度到直角三角形中,已知两个元素求其他元素的情境中. 通过例题的讲解后引出什么是解直角三角形,从而了解解直角三角形的意义。通过讨论直角三角形的边与角之间的关系,到解直角三角形过程中,使学生能掌握解直角三角形的知识. 以及在解直角三角形时,选择合适的工具解,即优选关系式.从而能提高分析问题和解决问题的能力.二、教学目标1.知道解直角三角形的概念、理解直角三角形中五个元素的关系。2.通过综合运用勾股定理,掌握解直角三角形,逐步形成分析问题、解决问题的能力.3渗透数形结合的数学思想,养成良好的学习习惯三、教学重点及难点教学重点:掌握利用直角三角形边角关系解直角三角形教学难点:锐角三角比在解直角三角形中的灵活运用四、教学用具准备黑板、多媒体设备.五、教学过程设计一、创设情景 引入新课:如图所示,一棵大树在一次强烈的地震中倒下,树干断处离地面3米且树干与地面的夹角是30°。大树在折断之前高多少米? 由30°直角边等于斜边的一半就可得AB=6米。分析树高是AB+AC=9米。由勾股定理容易得出BC的长为3 米。当然对于特殊锐角的解题用几何定理比较简单,也可以用锐角三角函数来解此题。二、知识回顾问题:1在一个三角形中共有几条边?几个内角?(引出“元素”这个词语)2直角三角形ABC中,C=90°,a、b、c、A、B这五个元素间有哪些等量关系呢?讨论复习师白:RtABC的角角关系、三边关系、边角关系分别是什么?总结:直角三角形的边、角关系(板书)(PPT)(1)两锐角互余AB90°;(2)三边满足勾股定理a2b2c2;(3)边与角关系sinAcosB,cosAsinB,tanAcotB,cotAtanB.三、学习新课、例题分析例题1 在RtABC中,C=900,B=380,a=8,求这个直角三角形的其它边和角.分析:如图,本题已知直角三角形的一个锐角和一条直角边,那么首先要搞清楚这两个元素的位置关系,再分析怎样用合适的锐角三角比解决问题,在本题中已知边是已知角的邻边,所以可以用的锐角三角比是余弦和正切.(板书)解:C=900 A +B=900A=900B=900380=520cosB= c= =tanB=b=atanB=8tan380另解:cotB= b= =注意:在解直角三角形的过程中,常会遇到近似计算,除特别说明外,边长保留四个有效数字.定义:在直角三角形中,由已知元素求出所有未知元素的过程,叫做解直角三角形.例题分析例题2 在RtABC中,C=900,c=7.34,a=5.28,解这个直角三角形.分析:本题如图,已知直角三角形的一条直角边和斜边,当然首先用勾股定理求第三边,怎样求锐角问题,要记住解决问题最好用原始数据求解,避免用间接数据求出误差较大的结论.(板书)解:C=900,a2b2c2b=sinA=A 460 0B=900A900460 0=440 0.注意:在解直角三角形的过程中,常会遇到近似计算,除特别说明外,边长保留四个有效数字,角度精确到1。4、学会归纳通过上述解题,思考对于一个直角三角形,除直角外的五个元素中,至少需要知道几 个元素,才能求出其他元素?想一想:如果知道两个锐角,能够全部求出其他元素吗?如果只知道五个元素中的一个元素,能够全部求出其他元素吗?归纳结论:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出其余三个元素.说明 我们已掌握RtABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情5、我当小医生(请找出题中的错误,并改正)已知:如图,在RtABC中, C=90°,由下列条件,解直角三角形:(结果保留根号) 【精品文档】