全等三角形性质判定复习课件.ppt
数学( 北师大.七年级 下册 )议论堡中学议论堡中学 张云仿张云仿一、全等三角形概念:一、全等三角形概念: 能够能够 的三角形是全等三角形的三角形是全等三角形. 二、全等三角形性质:二、全等三角形性质: 全等三角形对应边全等三角形对应边 .全等三角形对应全等三角形对应角角 . 3、全等三角形的识别:、全等三角形的识别:( 1)一般三角形全等的识别:)一般三角形全等的识别:SSS,SAS,ASA,AAS (2)直角三角形全等的识别:除以上方法外)直角三角形全等的识别:除以上方法外,还有还有HL注意:注意:1、“分别对应相等分别对应相等”是关键是关键 2、两边及其中一边的对角分别对应相等的两个三角、两边及其中一边的对角分别对应相等的两个三角形不一定全等形不一定全等一、全等三角形性质应用一、全等三角形性质应用1 1:如图,:如图,AOBAOBCODCOD,AB=7,C=60AB=7,C=60则则CD=CD= ,A=,A= . .ABCDO一、全等三角形性质应用一、全等三角形性质应用2 2:已知:已知ABCABCDEFDEF, A=60A=60,C=50,C=50则则E=E= . .CBAFED一、全等三角形性质应用一、全等三角形性质应用3 3:如图,如图,ABC DEF,DE=4,AE=1,则,则BE的长是(的长是( )A5 B4 C3 D2FEDCBA1、如图所示,:已知、如图所示,:已知AC=AD,请你添加一个条件,请你添加一个条件,使得,使得 ABC ABDBACD思路思路已知两边已知两边找另一边找另一边 (SSS)找夹角找夹角 (SAS)隐含条件AB=AB二、全等三角形判定二、全等三角形判定变式变式1:如图,已知:如图,已知C=D,请你添加一个条件,请你添加一个条件,使得,使得 ABC ABDBACD思路思路已知一边一角已知一边一角这边为角的对边这边为角的对边找任一角找任一角(AAS)隐含条件AB=AB变式变式2:如图,已知:如图,已知CAB=DAB,请你添加一个条件,请你添加一个条件,使得,使得 ABC ABDBACD思路思路已知一边一角已知一边一角这边为角的邻边这边为角的邻边夹角的另一边(夹角的另一边(SAS)夹边的另一角(夹边的另一角(ASA)找边的另一角(找边的另一角(AAS)隐含条件AB=AB 如图,已知如图,已知B= E,要识别,要识别ABC AED,需要添,需要添加的一个条件是加的一个条件是-思路思路已知两角:已知两角:找夹边找夹边找一角的对边找一角的对边ABCDEAB=AEAC=AD或或 DE=BC(ASA)(AAS) AC=DF二小试牛刀二小试牛刀1. 如图,在如图,在ABC和和BAD中,中,BC = AD,请你,请你再补充一个条件,使再补充一个条件,使ABC BAD你补充的你补充的条件是条件是 .DABC二、小试牛刀二、小试牛刀ABCEF2. 已知:如图,已知:如图, AEF 与与ABC中,中, E =B, EF=BC.请你添加一个条件,请你添加一个条件,使使AEF ABC.小试牛刀小试牛刀例例2、如图、如图,某同学把一块三角形的玻璃打碎成某同学把一块三角形的玻璃打碎成了三块了三块,现在要到玻璃店去配一块完全一样的玻现在要到玻璃店去配一块完全一样的玻璃璃,那么最省事的办法是拿那么最省事的办法是拿( )去配去配.三、利用全等三角形证明线段(角)相等三、利用全等三角形证明线段(角)相等例例1.如图,已知如图,已知AB=AD,AC=AE,1=2,求证:求证:BC=DEABCDE12请同学们注请同学们注意书写格式意书写格式哦!哦!三、利用全等三角形证明线段(角)相等三、利用全等三角形证明线段(角)相等2. 如图,点如图,点B、E、C、F在一条直线上,在一条直线上,ABDE,ABDE,AD 求证:求证:BE=CFFEDCBA证明两条线段相等的方法有哪些?证明两条线段相等的方法有哪些?DCBA3. 已知:如图,已知:如图, ABC和和CDB中,中,AB=DC,AC=DB求证:求证: ABD= DCA三、利用全等三角形证明线段(角)相等三、利用全等三角形证明线段(角)相等O证明两个角相等的方法有哪些?证明两个角相等的方法有哪些?1. 如图,在如图,在AFD和和BEC中,点中,点A、E、F、C在在同一直线上,有下列四个论断:同一直线上,有下列四个论断: AD=CB,AE=CF,BD, AC.请用其中三个作为条件,余下一个作为结论,请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出解答过程。编一道数学问题,并写出解答过程。ABCDEF四、综合应用四、综合应用在在ABC中中, ACB=90,AC=BC,直线直线MN经过点经过点C, ADMN于点于点D, BE MN于点于点E,(1)当直线)当直线MN旋转到图旋转到图(1)的位置时的位置时,猜想线段猜想线段AD,BE,DE的数量关系,并证明你的猜想的数量关系,并证明你的猜想NMEDCBA图图(1)在在ABC中中, ACB=90,AC=BC,直线直线MN经过点经过点C, ADMN于点于点D, BE MN于点于点E,(2)当直线)当直线MN旋转到图旋转到图(2)的位置时的位置时,猜想线段猜想线段AD,BE,DE的数量关系,并证明你的猜想的数量关系,并证明你的猜想NMEDCBA图图(2)感悟与反思:感悟与反思:、平行、平行角相等;角相等;、对顶角、对顶角角相等;角相等;、公共角、公共角角相等;角相等;、角平分线、角平分线角相等;角相等;、垂直、垂直角相等;角相等;、中点、中点边相等;边相等;、公共边、公共边边相等;边相等;、旋转、旋转角相等,边相等。角相等,边相等。1、要说明两个三角形全等,要结合题目的条件和结论,选、要说明两个三角形全等,要结合题目的条件和结论,选择恰当的判定方法择恰当的判定方法2、全等三角形,是说明两条、全等三角形,是说明两条线段线段或两个或两个角角相等的重要方法相等的重要方法之一,说明时之一,说明时 要观察待说明的线段或角,在哪两个可能全等的三角要观察待说明的线段或角,在哪两个可能全等的三角形中。形中。 分析分析要说明两个三角形全等,已有什么条件,还缺什要说明两个三角形全等,已有什么条件,还缺什么条件。么条件。 有有公共边公共边的,的,公共边公共边一般是对应边,一般是对应边, 有有公共角公共角的,的,公公共角共角一般是对应角,有一般是对应角,有对顶角对顶角,对顶角对顶角一般是对应角一般是对应角总之,说明理由的过程中能用简单方法的就不要绕弯路。总之,说明理由的过程中能用简单方法的就不要绕弯路。 祝愿同学们祝愿同学们快乐学习快乐生活快乐学习快乐生活谢谢谢谢