欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    卡尔曼滤波器原理详解ppt课件.ppt

    • 资源ID:33636722       资源大小:780KB        全文页数:25页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    卡尔曼滤波器原理详解ppt课件.ppt

    卡尔曼滤波器原理卡尔曼滤波器原理林斌林斌 P2011090261234内容提纲内容提纲发展概述算法前提算法推导算法总结卡尔曼滤波5算法扩展Rudolf (Rudy) Emil Klmn(1930 )卡尔曼滤波工程背景:1960s航空航天工程突飞猛进电子计算机又方兴未艾正式提出:一种关于线性过滤和预测难题的新方法1960A new approach to linear filtering and prediction problems , 19601发展概述卡尔曼滤波1发展概述优势:1、采用物理意义较为直观的时域状态空间2、仅需要前后两步的数据,数据存储量较小3、使用比较简单的递推算法,便于在计算机上实现4、不仅适用于平稳过程,还可以推广到非平稳随机过程的情况发展:卡尔曼滤波器已成为推广研究和应用的主题,尤其是在自主或协助导航领域。卡尔曼滤波2算法前提随机离散系统模型定义随机离散时间过程的状态向量 ,该过程由以下离散随机差分方程描述:111kkkkwBuAxxkkkvHxzmkRz nkRx 1 . 2假设系统满足可观性要求,定义观测向量 ,得到观测方程:2 . 2随机信号 和 分别表示过程激励噪声和观测噪声,并假设它们是相互独立并满足正态分布的白噪声。kvkwnx1 nxn nxn nx1 nx1mx1 mxn mx1卡尔曼滤波2算法前提即有:过程激励噪声观测噪声实际过程中过程激励噪声协方差矩阵Q和观测噪声协方差矩阵R可能随着每次迭代计算而变化,但在这里我们假设它们为常数。另外,状态转移矩阵A,输入矩阵B和测量方程2.2中的矩阵H,在实际过程中都可能随时间变化而变化,但在这儿假设为常数。3 . 24 . 2), 0(RNvk), 0(QNwk卡尔曼滤波2算法前提先验估计和后验估计,及其误差定义 为根据上一次迭代计算结果而产生的估计值,称为先验估计。定义 为根据当前计算结果而产生的估计值,称为后验估计。定义先验估计误差为定义后验估计误差为nkRx nkRx kkkxxenx1 真值5 . 2kkkxxenx1 真值6 . 2卡尔曼滤波2算法前提定义先验估计误差的协方差为定义 后验估计误差的协方差为)cov(,kkkkeeeEPT)cov(,EkkkkeeePT7 . 28 . 2卡尔曼滤波目的描述:在系统结构已知的情况下,给定k时刻的状态观测向量 ,求k时刻的系统状态向量的最优估计 ,使得 最小。基本思路:1、根据 计算出k时刻的先验估计 同时也产生了先验估计的协方差矩阵 的递推公式3算法推导kzkx kP1kxkx 11kkkBuxAx1 . 3kPQAPAPTkk12 . 3卡尔曼滤波2、根据先验估计 计算出k时刻的观测向量的估计3、计算实测值 与估计 的差,以此来修正之前的先验估计 ,得到后验估计把 带入:3算法推导)(kkkkkxHzKxx3 . 3kx kkxHz kzkz kx kx 权重 残差这里的权重系数也成为卡尔曼增益。至此卡尔曼滤波计算原型公式基本结束,下面要确定出最优系数K和在最优系数下的后验估计误差的协方差矩阵的递推方法)(kkkkkzzKxxkz 卡尔曼滤波推导后验协方差矩阵按照定义,我们从误差协方差 开始推导如下:带入 再带入3算法推导kP)cov(kkkxxPkP)(cov(kkkkkkxHzKxxP)(kkkkkxHzKxxkkkvHxz)(cov(kkkkkkkxHvHxKxxP卡尔曼滤波整理测量误差向量,得:因为噪声项与其他项不相关,协方差=0,所以有:利用协方差矩阵性质,提出常数矩阵,得:3算法推导)(cov(kkkkkkvKxxHKIP)cov()(cov(kkkkkkvKxxHKIPTkkkTkkkkkKvKHKIxxHKIP)cov()(cov()(卡尔曼滤波如果记 ,则有:3算法推导kkkPxx)cov(TkkTkkkkRKKHKIPHKIP)()(4 . 3卡尔曼滤波推导最优卡尔曼增益最优化K:使后验估计 的协方差 达到最小。(换一个概念)也是使向量的二范数的数学期望值最小化的一个过程。这等同于后验估计的协方差矩阵的迹最小化3算法推导kKkx kPkkxx|2kkxxEkkkPtrxxP|2卡尔曼滤波首先展开3.4式,得:记:上面的式子可以写为:3算法推导TkTkkTkTkkkkkKRHPHKKHPPHKPP)(RHPHSTkkTkkkTkTkkkkkKSKKHPPHKPP5 . 3卡尔曼滤波把 对 求导,并令导数=0,则可以得到 取最小值时的最优化 的值。解得:3算法推导)(kPtrTTCBdABACdtr)(引入常用数学公式?kK)(kPtrkK022)()()()(kkTkkkTTkkTkTkkkSKHPSKKSHPPHdKPdtr11)(RHPHHPSHPKTkTkkTkk6 . 3卡尔曼滤波化简后验误差协方差公式在卡尔曼增益等于上面导出的最优值时,计算后验协方差的公式可以进行简化。对于卡尔曼增益公式在卡尔曼增益公式两侧同时右乘得:把上式带入3.5式,可以消去后面的两项,得:3算法推导1kTkkSHPKTkkKSTkTkTkkkKHPKSKkkkkPHKPP3算法推导整理,得:这个公式的计算比较简单,所以实际中总是使用这个公式,但是需注意这公式仅在使用最优卡尔曼增益的时候它才成立。如果算术精度总是很低而导致数值稳定性出现问题,或者特意使用非最优卡尔曼增益,那么就不能使用这个简化;必须使用3.5式表示的后验误差协方差公式。kkkPHKIP)(7 . 3卡尔曼滤波卡尔曼增益的物理意义其中:H矩阵为常量; 与过程激励噪声的协方差矩阵Q有关;R为测量噪声的协方差矩阵。取值范围:当 R 趋向于零时,有:当 趋向于零时,有:3算法推导0lim0kPKkkPRHPHHPKTkTkkkP10lim HKkR, 01HKk卡尔曼滤波意义:决定了最优估计组成比例的“调节器”当 R 趋向于零时,有:测量噪声 V=0此时3.3式改为系统表现为完全取测量值作为状态的后验估计值,而系统的先验状态估计完全被抛弃。反之当 趋向于零时,根据式3.2可知,Q=0易知,此时系统完全抛弃测量值,取先验估计值3算法推导kP10lim HKkRmx1kkkkkzHxHzHxx11)(nx1卡尔曼滤波算法描述卡尔曼滤波器用反馈控制的方法估计过程状态。估计过程某一时刻的状态,然后以(含噪声)测量值得方式获得反馈,因此卡尔曼滤波器可以分为两个部分:1、时间更新方程负责向前推算当前状态向量和误差协方差估计的值,为下一个时间状态构成先验估计。2、测量更新方程负责将先验估计和新的测量变量结合已构成改进后的后验估计。4算法总结卡尔曼滤波时间更新方程测量更新方程4算法总结11kkkBuxAx1 . 42 . 41)(RHPHHPKTkTkk3 . 44 . 4)(kkkkxHzKxxQAPAPTkk 15 . 4kkkPHKIP)(卡尔曼滤波4算法总结BAHKkx kx kz1kx1kukz 时间更新(预测)测量更新(校正)算法框图1、状态估计向量的运算流程图卡尔曼滤波4算法总结算法框图2、误差协方差的运算流程图AATI -KkHkPQ1kP时间更新(预测)测量更新(修正)kP卡尔曼滤波滤波器参数调整在卡尔曼滤波器实际实现时,测量噪声R一般可以观测得到,是滤波器的已知条件。观测测量噪声协方差R可以通过离线试验获取。而过程激励噪声协方差Q值比较难以确定,因为我们无法直接观测到过程状态 。有时候可以通过Q的手动选择,人为的为过程“注入”一个足够的不确定因素,来产生一个可以接受的结果。也可以使用一个离线模拟滤波器与在线滤波器进行实时对比的方式来实时优化滤波器的参数(Q和R)。5算法扩展kx

    注意事项

    本文(卡尔曼滤波器原理详解ppt课件.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开