2022年人教版初中数学知识点总结-最终 .pdf
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、 一元一次方程、 图形的认识初步四个章节的1.有理数:(1)凡能写成qp (p,q 为整数且p0)形式的数,都是有理数 .正整数、 0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0 即不是正数,也不是负数; -a 不一定是负数, +a也不一定是正数;不是有理数;正有理数有理数零负有理数正整数正分数负整数负分数整数有理数分数正整数零负整数正分数负分数(2)有理数的分类 : 2数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3相反数:(1)只有符号不同的两个数, 我们说其中一个是另一个的相反数;0 的相反数还是0; (2)相反数的和为 0 a+b=0 a、b 互为相反数 . 4.绝对值:(1)正数的绝对值是其本身, 0 的绝对值是 0,负数的绝对值是它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:(a0)a a0(a0) a(a0) 或a aa (a0)(a0) ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大; (2)正数永远比 0 大,负数永远比 0 小; (3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小; (5)数轴上的两个数,右边的数总比左边的数大;(6)大数 -小数 0,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 22 页小数-大数 0. 6.互为倒数:乘积为1 的两个数互为倒数;注意:0 没有倒数;若 a0 ,那么 a 的倒数是 b 互为倒数;若 ab=-1 a、b 互为负倒数 . 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;- 1 - 1a ;若 ab=1 a、(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与 0 相加,仍得这个数 . 8有理数加法的运算律:(1)加法的交换律: a+b=b+a ; (2)加法的结合律:(a+b)+c=a+(b+c). 9有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定 . 11 有理数乘法的运算律:(1)乘法的交换律: ab=ba ; (2)乘法的结合律:(ab)c=a(bc) ;(3)乘法的分配律: a(b+c)=ab+ac . 12有理数除法法则: 除以一个数等于乘以这个数的倒数;注意:零不能做除数,即 a 0 无意义 . 13有理数乘方的法则:(1)正数的任何次幂都是正数;(2) 负数的奇次幂是负数;负数的偶次幂是正数; 注意: 当 n为正奇数时 : (-a)n=-an或(a -b)n=-(b-a)n , 当 n 为正偶数时 : (-a)n =an 或 (a-b)n=(b-a)n . 14乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15科学记数法:把一个大于10 的数记成 a 10n 的形式,其中 a 是整数数位只有一位的数,这种记数法叫科学记数法. 16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位 . 17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减. 第二章整式的加减一知识框架精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 22 页二.知识概念1单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式. 2单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数; 系数不为零时, 单项式中所有字母指数的和,叫单项式的次数. 3多项式:几个单项式的和叫多项式. 4多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。第二章 一元一次方程- 2 - 一知识框架二知识概念1一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程. 2一元一次方程的标准形式:ax+b=0(x 是未知数, a、b 是已知数,且 a0 ). 3一元一次方程解法的一般步骤:整理方程, 去分母 , 去括号 , 移项 , 合并同类项, 系数化为 1 , (检验方程的解) . 4列一元一次方程解应用题:(1)读题分析法 :, 多用于 “ 和,差,倍,分问题 ” 仔细读题,找出表示相等关系的关键字,例如: “ 大,小,多,少,是,共,合,为,完成,增加,减少,配套-” ,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程. (2)画图分析法 : , 多用于 “ 行程问题 ”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形, 使图形各部分具有特定的含义, 通过图形找相等关系是解决问题的关键,从而取得布列方程的依据, 最后利用量与量之间的关系 (可把未知数看做已知量) , 填入有关的代数式是获得方程的基础. 11 列方程解应用题的常用公式:(1)行程问题:距离=速度 时间精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 22 页速度距离时间时间距离速度;工作量工效(2)工程问题:工作量 =工效 工时工效工作量工时工时;(3)比率问题:部分=全体 比率比率部分全体全体部分比率;(4)顺逆流问题:顺流速度 =静水速度 +水流速度,逆流速度 =静水速度 -水流速度; (5)商品价格问题:售价=定价 折110 ,利润 =售价-成本,利润率售价成本成本100% ;(6)周长、面积、体积问题:C 圆=2R,S圆=R2 ,C 长方形=2(a+b),S 长方形=ab, C 正方形 =4a, S 正方形 2,S 环形=(R22长方体, V 正方体 3,V 圆柱=R2 ,V 圆锥=231 - 3 - 知识框架精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 22 页七年级数学(下)知识点第五章相交线与平行线一、知识框架二、知识概念1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。4.平行线:在同一平面内,不相交的两条直线叫做平行线。5.同位角、内错角、同旁内角:同位角: 1 与5 像这样具有相同位置关系的一对角叫做同位角。内错角: 2 与6 像这样的一对角叫做内错角。同旁内角: 2 与5 像这样的一对角叫做同旁内角。6.命题:判断一件事情的语句叫命题。- 4 - 7.平移:在平面平面直角坐标系一知识框架二知识概念1.有序数对:有顺序的两个数a与 b 组成的数对叫做有序数对,记做(a,b)2.平面直角坐标系:在平面三角形一知识框架- 5 - 二知识概念1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 22 页2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。5.角平分线:三角形的一个二元一次方程组一知识结构图- 6 - 二、知识概念1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次。方程,一般形式是ax+by=c(a0,b0)。2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减, 就能消去这个未知数, 这种方法叫做加减消元法, 简称加减法。第九章不等式与不等式组一知识框架二、知识概念1.用符号 “ ”“”“ ”“”表示大小关系的式子叫做不等式。2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 22 页- 7 - 4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是 1,像这样的不等式,叫做一元一次不等式。5.一元一次不等式组: 一般地,关于同一未知数的几个一元一次不等式合在一起,就组成 6.了一个一元一次不等式组。7.定理与性质不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。本章数据的收集、整理与描述一知识框架二知识概念1.全面调查:考察全体对象的调查方式叫做全面调查。2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。3.总体:要考察的全体对象称为总体。4.个体:组成总体的每一个考察对象称为个体。5.样本:被抽取的所有个体组成一个样本。6.样本容量:样本中个体的数目称为样本容量。7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。8.频率:频数与数据总数的比为频率。9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 22 页八年级数学(上)知识点人教版八年级上册主要包括全等三角形、轴对称、实数、一次函数和整式的乘除与分解因式五个章节的全等三角形一知识框架- 8 - 二知识概念1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。2全等三角形的性质:全等三角形的对应角相等、对应边相等。3.三角形全等的判定公理及推论有:(1)“ 边角边 ” 简称“SAS ”(2)“ 角边角 ” 简称“ASA ”(3)“ 边边边 ” 简称“SSS ”(4)“ 角角边 ” 简称“AAS ”(5)斜边和直角边相等的两直角三角形(HL) 。4.角平分线推论:角的轴对称一知识框架二知识概念1.形;这条直线叫做对称轴。2.性质: (1)轴对称图形的对称轴, 是任何一对对应点所连线段的垂直平分线。(2)角平分线上的点到角两边距离相等。(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。(5)轴对称图形上对应线段相等、对应角相等。3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“ 三线合一 ” 。- 9 - 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 22 页5.等腰三角形的判定:等角对等边。6.等边三角形角的特点:三个实数1.算术平方根:一般地,如果一个正数x 的平方等于 a,即 x2=a,那么正数 x 叫做 a记作 a。 0 的算术平方根为 0; 从定义可知,只有当 a0 时,a才有算术平方根。2.平方根:一般地,如果一个数x 的平方根等于 a,即 x2=a,那么数 x 就叫做 a 3.正数有两个平方根(一正一负)它们互为相反数;0 只有一个平方根,就是它本身;负数没有平方根。4.正数的立方根是正数; 0 的立方根是 0;负数的立方根是负数。自然数 (0,1,2,3)整数负整数 (1,2,3)12)有理数正分数 (,)(整数、有限小数、无限循环小数23分数(小数)实数12 负分数 (,)5.数 a 的相反数是 -a,一个正实数的绝对值是它本身,23一个负数的绝对值是它的相反数,0 的绝对值是0 正有理数ababa 负有理数0,b0)a(a(a0,b0)bb 第十四章一次函数一.知识框架二知识概念1.一次函数:若两个变量x,y 间的关系式可以表示成y=kx+b(k 0) 的形式 ,则称 y是 x 的一次函数 (x 为自变量 ,y 为因变量 )。 特别地 ,当 b=0 时,称 y 是 x 的正比例函数。1b.01b.02k0 k0b02b0b0b0 33- 10 - 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 22 页2.正比例函数一般式: y=kx(k0 ) ,其图象是经过原点 (0,0)的一条直线。3.正比例函数y=kx(k0 )的图象是一条经过原点的直线,当k>0 时,直线y=kx 经过第一、三象限,y 随 x 的增大而增大, 当 k<0 时,直线 y=kx 经过第二、四象限 ,y 随 x 的增大而减小,在一次函数y=kx+b 中:当 k>0 时,y 随 x 的增大而增大 ; 当 k<0 时,y 随 x 的增大而减小。4.已知两点坐标求函数解析式:待定系数法第十五章整式的乘除与分解因式1.同底数幂的乘法法则 : aaa 2. 幂的乘方法则:一般地 ,(a)nmnmn(m,n都是正数 ) (a)mnamn(m,n都是正数 ) an(当 n为偶数时),na(当 n 为奇数时 ). 3. 整式的乘法(1) 单项式乘法法则 :单项式相乘 ,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。(2)单项式与多项式相乘 :单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式, 即单项式与多项式相乘, 就是用单项式去乘多项式的每一项,再把所得的积相加。(3) 多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。4平方差公式 : (ab)(ab)ab 2222 2 5完全平方公式 : (ab)a2abb m6. 同底数幂的除法法则:同底数幂相除 ,底数不变 ,指数相减 ,即 aanamn (a 0,m、n 都是正数 ,且 m>n). 在应用时需要注意以下几点: 法则使用的前提条件是“ 同底数幂相除 ” 而且 0 不能做除数 ,所以法则中 a0.任何不等于 0 的数的 0 次幂等于 1,即 a01(a0),如 1001,(-2.50=1),则 00 无意义. ap1 ap任何不等于0 的数的 -p 次幂(p 是正整数 ),等于这个数的p 的次幂的倒数 ,即( a 0,p是正整数 ), 而 0-1,0-3 都是无意义的 ;当 a>0 时,a-p 的值一定是正的 ; 当 a<0 时,a-p 的值可能是正也可能是负的 ,如(-2)-21 4,(2)31 8 运算要注意运算顺序 . 7整式的除法单项式除法单项式 :单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;多项式除以单项式 : 多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加 . 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 22 页8.分解因式:把一个多项式化成几个整式的积的形式,. - 11 - 分解因式的一般方法: 1. 提公共因式法 2. 运用公式法 3.十字相乘法分解因式的步骤: (1)先看各项有没有公因式 ,若有,则先提取公因式 ; (2)再看能否使用公式法 ; (3)用分组分解法 ,即通过分组后提取各组公因式或运用公式法来达到分解的目的; (4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解 ; (5)因式分解的结果必须进行到每个因式在有理数范围分式一知识框架二知识概念1.分式:形如 A/B,A、B 是整式, B 中含有未知数且 B 不等于 0 的整式叫做分式(fraction)。其中 A 叫做分式的分子, B 叫做分式的分母。2.分式有意义的条件:分母不等于0 3.约分:把一个分式的分子和分母的公因式(不为 1 的数)约去,这种变形称为约分。4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。分式的基本性质 :分式的分子和分母同时乘以(或除以)同一个不为0 的整式,分式的值不变。用式子表示为:A/B=A*C/B*C A/B=A C/B C (A,B,C 为整式,且 C 0 )5.最简分式 :一个分式的分子和分母没有公因式时,这个分式称为最简分式 .约分时 ,一般将一个分式化为最简分式. 6.分式的四则运算: 1.同分母分式加减法则 :同分母的分式相加减 ,分母不变,把分子相加减 .用字母表示为: a/c b/c=a b/c 2.异分母分式加减法则:异分母的分式相加减,先通分 ,化为同分母的分式 ,然后再按同分母分式的加减法法则进行计算.用字母表示为: a/b c/d=ad cb/bd 3.分式的乘法法则 :两个分式相乘 ,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母 .用字母表示为: a/b * c/d=ac/bd 4.分式的除法法则 :(1).两个分式相除 ,把除式的分子和分母颠倒位置后再与被除式相乘 .a/b c/d=ad/bc (2).除以一个分式,等于乘以这个分式的倒数:a/b c/d=a/b*d/c - 12 - 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 22 页7.分式方程的意义 :分母中含有未知数的方程叫做分式方程. 8.分式方程的解法 :去分母 (方程两边同时乘以最简公分母,将分式方程化为整式方程 );按解整式方程的步骤求出未知数的值;验根 (求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根 ). 第十七章反比例函数一.知识框架二知识概念1.反比例函数:形如yk x(k 为常数, k0 )的函数称为反比例函数。其他形式xy=k ykx1yk1 x 2.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x 和 y=-x。对称中心是:原点3.性质:当 k0 时双曲线的两支分别位于第一、第三象限,在每个象限当 k0 时双曲线的两支分别位于第二、第四象限,在每个象限勾股定理一.知识框架2 二1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为 c,那么 a2b2=c2。勾股定理逆定理:如果三角形三边长a,b,c满足 a2b2=c2。 ,那么这个三角形是直角三角形。2.定理:经过证明被确认正确的命题叫做定理。3.我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 (例:勾股定理与勾股定理逆定理)第十九章四边形- 13 - 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 22 页一知识框架二知识概念1.平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。2.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。1.两组对边分别相等的四边形是平行四边形3.平行四边形的判定2.对角线互相平分的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.一组对边平行且相等的四边形是平行四边形。4.三角形的中位线平行于三角形的第三边,且等于第三边的一半。5.直角三角形斜边上的中线等于斜边的一半。6.矩形的定义:有一个角是直角的平行四边形。7.矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。AC=BD 1.有一个角是直角的平行四边形叫做矩形。8.矩形判定定理:2.对角线相等的平行四边形是矩形。3.有三个角是直角的四边形是矩形。9.菱形的定义:邻边相等的平行四边形。10.菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。1.一组邻边相等的平行四边形是菱形。11.菱形的判定定理: 2.对角线互相垂直的平行四边形是菱形。3.四条边相等的四边形是菱形。12.S菱形=1/2 ab(a、b 为两条对角线)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 22 页13.正方形定义:一个角是直角的菱形或邻边相等的矩形。14.正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。15.正方形判定定理:1.邻边相等的矩形是正方形。2.有一个角是直角的菱形是正方形。B 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 14 页,共 22 页16.梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。17.直角梯形的定义:有一个角是直角的梯形18.等腰梯形的定义:两腰相等的梯形。19.等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。20.等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。第二十章数据的分析一知识框架二知识概念1.加权平均数: 加权平均数的计算公式。权的理解 :反映了某个数据在整个数据中的重要程度。2.中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。3. 众数:一组数据中出现次数最多的数据就是这组数据的众数(mode) 。4. 极差:组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。5.方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。九年级数学(上)知识点人教版九年级数学上册主要包括了二次根式、二元一次方程、 旋转、圆和概率五个章节的二次根式一知识框架二知识概念二次根式:一般地,形如(a0 )的代数式叫做二次根式。当a0 时,a 表示 a的算数平方根 ,其中0=0 对于本章内容,教学中应达到以下几方面要求:1. 理解二次根式的概念,了解被开方数必须是非负数的理由;2. 了解最简二次根式的概念;3. 理解并掌握下列结论:- 15 - 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 15 页,共 22 页1)是非负数;(2) ; (3) ;4. 掌握二次根式的加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;5. 了解代数式的概念,进一步体会代数式在表示数量关系方面的作用。第二十二章一元二次根式一知识框架二.知识概念一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的方程,叫做一元二次方程一般地,任何一个关于 x 的一元二次方程, ? 经过整理, ? 都能化成如下形式ax2+bx+c=0 (a0 ) 这种形式叫做一元二次方程的一般形式一个一元二次方程经过整理化成ax2+bx+c=0(a0 )后,其中 ax2 是二次项, a是二次项系数; bx 是一次项, b 是一次项系数; c 是常数项本章内容主要要求学生在理解一元二次方程的前提下,通过解方程来解决一些实际问题。(1)运用开平方法解形如( x+m)2=n(n0 )的方程;领会降次 转化的数学思想(2)配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为 1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q 的形式,如果 q0精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 16 页,共 22 页,方程的根是 xp;如果 q0,方程无实根介绍配方法时, 首先通过实际问题引出形如的方程。这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如举例说明一元二次方程可以化为形如的方程。然后的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1 的一元二次方程, 也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了“ 公式法 ” 以后,学生对这个内容会有进一步的理解。- 16 - (3)一元二次方程 ax2+bx+c=0(a0 )的根由方程的系数a、b、c 而定,因此:解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当 b2-4ac0 时,?将 a、b、c 代入式子x=b2a就得到方程的根(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。)这个式子叫做一元二次方程的求根公式利用求根公式解一元二次方程的方法叫公式法第二十三章旋转一.知识框架精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 17 页,共 22 页二知识概念1.旋转:在平面圆一知识框架- 17 - 二知识概念1.圆: 平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。2.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。 连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。4.1.圆的周长 C=2r=d 2.圆的面积 S=r ; 3.扇形弧长 l=n r/18015.扇形面积 S= (R -r ) 5.圆锥侧面积 S=rl第二十五章概率- 18 - 知识框架本章二次函数一知识框架精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 18 页,共 22 页二.知识概念1.二次函数:一般地,自变量x 和因变量y 之间存在如下关系:一般式:y=ax +bx+c(a 0,a、b、c 为常数 ),则称 y 为 x 的二次函数。2.二次函数的解析式三种形式。一般式y=ax2 +bx+c(a 0)顶点式ya(xh)k b 2a4acb4a22 ya(x)2 交点式ya(xx1)(xx2) 3.二次函数图像与性质对称轴: xb 2a b 2a,2 ) 4acb 4a顶点坐标: (与 y 轴交点坐标( 0,c)4.增减性:当 a>0 时,对称轴左边, y 随 x 增大而减小;对称轴右边,y 随 x增大而增大当 a<0 时,对称轴左边, y 随 x 增大而增大;对称轴右边,y 随 x 增大而减小- 19 - 5.二次函数图像画法:勾画草图关键点: 1开口方向2 对称轴 3顶点 4与 x 轴交点 5与 y 轴交点 6.图像平移步骤(1)配方ya(xh)k,确定顶点( h,k) (2)对 x 轴 左加右减;对 y 轴上加下减7.二次函数的对称性二次函数是轴对称图形,有这样一个结论:当横坐标为x1, x2 其对应的纵坐标相等那么对称轴 x8.根据图像判断 a,b,c的符号 (1)a 开口方向(2)b 对称轴与 a 左同右异9.二次函数与一元二次方程的关系抛物线 y=ax2 +bx+c 与 x 轴交点的横坐标x1, x2 是一元二次方程 ax2 +bx+c=0(a0 )的根。 抛物线 y=ax2 +bx+c,当 y=0 时,抛物线便转化为一元二次方程精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 19 页,共 22 页ax2 +bx+c=0 b4ac>0 时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点; b4ac=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点;b4ac<0 时,一元二次方程有不等的实根,二次函数图像与x轴没有交点222 2 x1x2 2 第二十七章相似一知识框架二.知识概念:1.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。互为相似形的三角形叫做相似三角形2.相似三角形的判定方法 : 根据相似图形的特征来判断。 (对应边成比例,对应角相等)1. 平行于三角形一边的直线(或两边的延长线 )和其他两边相交 ,所构成的三角形与原三角形相似;2. 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;3. 如果两个三角形的两组对应边的比相等,并且相应的夹角相等 ,那么这两个- 20 - 三角形相似;4. 如果两个三角形的三组对应边的比相等,那么这两个三角形相似;3.直角三角形相似判定定理: 1.斜边与一条直角边对应成比例的两直角三角形相似。2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似, 并且分成的两个直角三角形也相似。4.相似三角形的性质 : 1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、等)的比等于相似比。2.相似三角形周长的比等于相似比。3.相似三角形面积的比等于相似比的平方。第二十八章锐角三角函数一知识框架精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 20 页,共 22 页二知识概念1.Rt ABC 中A 的对边 (1)A 的对边与斜边的比值是A 的正弦,记作 sinA斜边(2)A 的邻边与斜边的比值是A 的余弦,记作 cosA A 的邻边斜边A 的对边 (3)A 的对边与邻边的比值是A 的正切,记作 tanAA 的邻边(4)A 的邻边与对边的比值是A 的余切,记作 cota- 21 - A 的邻边 A 的对边2.特殊值的三角函数:第二十九章知识框架投影与视图- 22 - 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 21 页,共 22 页二知识概念1.Rt ABC 中A 的对边 (1)A 的对边与斜边的比值是A 的正弦,记作 sinA斜边(2)A 的邻边与斜边的比值是A 的余弦,记作 cosA A 的邻边斜边A 的对边 (3)A 的对边与邻边的比值是A 的正切,记作 tanAA 的邻边(4)A 的邻边与对边的比值是A 的余切,记作 cota- 21 - A 的邻边 A 的对边2.特殊值的三角函数:第二十九章知识框架投影与视图- 22 - 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 22 页,共 22 页