2022年反比例函数的图像性质 .pdf
学习必备欢迎下载NMP32y=kxOxy反比例函数的图像性质(一)1.(对比练习)(1)已知正比例函数3)1(mxmy中, y 随 x 的增大而增大,求m 的值;(2)已知反比例函数3)1(mxmy在每一象限内,y 随 x 的增大而增大,求m 的值。2.(对比练习)(1)在函数xy2的图像上有三点(-3,y1)、 (-2,y2)、(1,y3), 则函数值y1、y2、y3的大小关系为;(2)在函数xmy22(m 为常数)的图像上有三点(-3, y1)、 (-2,y2)、(1,y3), 则函数值 y1、y2、y3的大小关系为;3. 如图,点( 2,3)在反比例函数xky的图像上,且点P 是该函数图像上的一点,过P作 PM x 轴于 M,PNy 轴于 N。(1)若点 P 的横坐标为4,求长方形PMON 的面积;(2)若点 P 为一动点, 当点 P 在双曲线位于第一象限的一支上运动时,长方形 PMON 的面积如何变化?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 4 页学习必备欢迎下载y=kxMPOxy(1)拓展训练 :引导学生从数(设出坐标)、形(等积变换)两方面探究下面三个图中,相应图形的面积与参数 k 的关系(2)变式训练 : 如图, P 为反比例函数xky的图像上一点,PMx 轴于 M,且 PMO 的面积为2.5,求 k的值。4. 如图,已知点A、B 在双曲线xky(x0)上, ACx 轴于点 C,BDy 轴于点 D,AC 与 BD 交于点 P,P 是 AC 的中点,若 ABP 的面积为3,则 k5.已知坐标平面内两点A(0,2)、B( 0,-2),试在双曲线xy12上找点 P,使得 PAB的面积为6. 反比例函数的图像性质(二)1. 已知 A、B 两点关于y 轴对称,且点A 在双曲线xy3上,点 B 在直线3xy上。若BAOxyCBAOxyCBAOxy甲乙丙y x O A B P C D 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 4 页学习必备欢迎下载N(-1,-4)M(2,m)OxyCBAyxOA 点坐标为( a,b),试求出式子baab的值。2. 如图,双曲线xky与直线)1(kxy交于 A、C 两点, AB x 轴于 B,且 AOB的面积为23,( 1)求双曲线与直线的解析式;(2)求 AOC的面积。【提示:x2+2x-3=(x+3)(x-1) 】3. 如图,已知双曲线xky(x0)经过长方形OABC 的边 AB 的中点 F,交 BC 于点 E,且四边形 OCBF 的面积为3,(1)求 k 的值;(2)点 E 是否线段 BC 的中点?请说明理由;(3)求四边形OEBF 的面积4. 如图,一次函数baxy1与反比例函数xky2的图像交于M( 2,m)、 N( -1, -4)两点(1)求出两个函数的解析式;(2)求不等式0 xkbax的解集;(3)求 MON 的面积。ABCEOFxy精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 4 页学习必备欢迎下载DCBAyxO5. 如图,点 A 是反比例函数xky1( x 0)上一点, ABx 轴与点 B,C是 OB的中点;一次函数baxy2的图像经过A、C两点,并交y 轴于点 D(0, -2),且 AOD的面积为4 (1)求两个函数的解析式;(2)在 y 轴右侧,当y1y2时,求 x 的取值范围。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 4 页