欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    人教版九年级数学上册21.2.1 第2课时《配方法》课件.ppt

    • 资源ID:3367314       资源大小:1.03MB        全文页数:26页
    • 资源格式: PPT        下载积分:1金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要1金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人教版九年级数学上册21.2.1 第2课时《配方法》课件.ppt

    第二十一章 一元二次方程,人教版九年级数学上册,21.2.1 配方法,第2课时 配方法,学习目标,1.了解配方的概念. 2.掌握用配方法解一元二次方程及解决有关问题. (重点) 3.探索直接开平方法和配方法之间的区别和联系. (难点),导入新课,复习引入,(1) 9x2=1 ;,(2) (x-2)2=2.,2.下列方程能用直接开平方法来解吗?,1.用直接开平方法解下列方程:,(1) x2+6x+9 =5;,(2)x2+6x+4=0.,把两题转化成(x+n)2=p(p0)的 形式,再利用开平方,讲授新课,问题1.你还记得吗?填一填下列完全平方公式.,(1) a2+2ab+b2=( )2;,(2) a2-2ab+b2=( )2.,a+b,a-b,探究交流,问题2.填上适当的数或式,使下列各等式成立.,(1)x2+4x+ = ( x + )2,(2)x2-6x+ = ( x- )2,(3)x2+8x+ = ( x+ )2,(4),x2- x+ = ( x- )2,你发现了什么规律?,22,2,32,3,42,4,二次项系数为1的完全平方式:常数项等于一次项系数一半的平方.,归纳总结,想一想: x2+px+( )2=(x+ )2,配方的方法,合作探究,怎样解方程: x2+6x+4=0 (1),问题1 方程(1)怎样变成(x+n)2=p的形式呢?,解:,x2+6x+4=0,x2+6x=-4,移项,x2+6x+9=-4+9,两边都加上9,二次项系数为1的完全平方式:常数项等于一次项系数一半的平方.,方法归纳,在方程两边都加上一次项系数一半的平方.注意是在二次项系数为1的前提下进行的.,问题2 为什么在方程x2+6x=-4的两边加上9?加其他数行吗?,不行,只有在方程两边加上一次项系数一半的平方,方程左边才能变成完成平方x2+2bx+b2的形式.,方程配方的方法:,要点归纳,像上面这样通过配成完全平方式来解一元二次方程,叫做配方法.,配方法的定义,配方法解方程的基本思路,把方程化为(x+n)2=p的形式,将一元二次方程降次,转化为一元一次方程求解,例1 解下列方程:,解:(1)移项,得,x28x=1,配方,得,x28x+42=1+42 ,( x4)2=15,由此可得,即,配方,得,由此可得,二次项系数化为1,得,解:移项,得,2x23x=1,即,移项和二次项系数化为1这两个步骤能不能交换一下呢?,配方,得,因为实数的平方不会是负数,所以x取任何实数时,上式都不成立,所以原方程无实数根,解:移项,得,二次项系数化为1,得,为什么方程两边都加12?,即,思考1:用配方法解一元二次方程时,移项时要 注意些什么?,思考2:用配方法解一元二次方程的一般步骤.,移项时需注意改变符号.,移项,二次项系数化为1; 左边配成完全平方式; 左边写成完全平方形式; 降次; 解一次方程.,一般地,如果一个一元二次方程通过配方转化成 (x+n)2=p.,当p0时,则 ,方程的两个根为 当p=0时,则(x+n)2=0,x+n=0,开平方得方程的两个根为 x1=x2=-n. 当p<0时,则方程(x+n)2=p无实数根.,规律总结,例2.试用配方法说明:不论k取何实数,多项式 k24k5 的值必定大于零.,解:k24k5=k24k41,=(k2)21,因为(k2)20,所以(k2)211.,所以k24k5的值必定大于零.,例3.若a,b,c为ABC的三边长,且 试判断ABC的形状.,解:对原式配方,得,由代数式的性质可知,所以,ABC为直角三角形.,1. 方程2x2 - 3m - x +m2 +2=0有一根为x = 0,则 m的值为( ) A. 1 B.1 C.1或2 D.1或-2 2.应用配方法求最值. (1) 2x2 - 4x+5的最小值; (2) -3x2 + 5x +1的最大值.,练一练,C,解:原式 = 2(x - 1)2 +3 当x =1时有最小值3,解:原式= -3(x - 2)2 - 4 当x =2时有最大值-4,归纳总结,配方法的应用,1.求最值或 证明代数式 的值为恒正 (或负),对于一个关于x的二次多项式通过配方成a(x+m)2 n的形式后,(x+m)20,n为常数,当a0时,可知其最小值;当a0时,可知其最大值.,2.完全平方式中的配方,如:已知x22mx16是一个完全平方式,所以一次项系数一半的平方等于16,即m2=16,m=4.,3.利用配方构成非负数和的形式,对于含有多个未知数的二次式的等式,求未知数的值,解题突破口往往是配方成多个完全平方式得其和为0,再根据非负数的和为0,各项均为0,从而求解.如:a2b24b4=0,则a2(b2)2=0,即a=0,b=2.,例4.读诗词解题: (通过列方程,算出周瑜去世时的年龄.) 大江东去浪淘尽, 千古风流数人物。 而立之年督东吴, 早逝英年两位数。 十位恰小个位三, 个位平方与寿符。 哪位学子算得快, 多少年华属周瑜?,解:设个位数字为x,十位数字为(x-3),x1=6, x2=5,x2-11x=-30,x2-11x+5.52=-30+5.52,(x-5.5)2=0.25,x-5.5=0.5,或x-5.5=-0.5,x2=10(x-3)+x,这个两位数为36或25,,周瑜去世的年龄为36岁.,周瑜30岁还攻打过东吴,,1.解下列方程:,(1)x2+4x-9=2x-11;(2)x(x+4)=8x+12; (3)4x2-6x-3=0; (4) 3x2+6x-9=0.,解:x2+2x+2=0,,(x+1)2=-1.,此方程无解;,解:x2-4x-12=0,,(x-2)2=16.,x1=6,x2=-2;,解:x2+2x-3=0,,(x+1)2=4.,x1=-3,x2=1.,当堂练习,2.利用配方法证明:不论x取何值,代数式x2x1的值总是负数,并求出它的最大值.,解:x2x1=(x2+x+ )+ 1,所以x2x1的值必定小于零.,当 时,x2x1有最大值,3.若 ,求(xy)z 的值.,解:对原式配方,得,由代数式的性质可知,4.如图,在一块长35m、宽26m的矩形地面上,修建同样宽的两条互相垂直的道路,剩余部分栽种花草,要使剩余部分的面积为850m2,道路的宽应为多少?,解:设道路的宽为xm, 根据题意得,(35-x)(26-x)=850,,整理得,x2-61x+60=0.,解得,x1=60(不合题意,舍去), x2=1.,答:道路的宽为1m.,5.已知a,b,c为ABC的三边长,且 试判断ABC的形状.,解:对原式配方,得,由代数式的性质可知,所以,ABC为等边三角形.,课堂小结,配方法,定义,通过配成完全平方形式解一元二次方程的方法.,步骤,一移常数项; 二配方配上 ; 三写成(x+n)2=p (p 0); 四直接开平方法解方程.,特别提醒: 在使用配方法解方程之前先把方程化为x2+px+q=0的形式.,应用,求代数式的最值或证明,

    注意事项

    本文(人教版九年级数学上册21.2.1 第2课时《配方法》课件.ppt)为本站会员(侗****源)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开