人教版九年级数学上册24.1.2《垂直于弦的直径》课件.ppt
第二十四章 圆,人教版九年级数学上册,24.1 圆的有关性质,24.1.2 垂直于弦的直径,1.进一步认识圆,了解圆是轴对称图形. 2.理解垂直于弦的直径的性质和推论,并能应用它解决一些简单的计算、证明和作图问题.(重点) 3.灵活运用垂径定理解决有关圆的问题.(难点),学习目标,折一折:,你能通过折叠的方式找到圆形纸片的对称轴吗? 在折的过程中你有何发现?,圆是轴对称图形,任何一条直径所在直线都是它的对称轴,导入新课,讲授新课,(1)圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?,(2)你是怎么得出结论的?,圆的对称性:圆是轴对称图形,任意一条直径所在直线都是圆的对称轴.,用折叠的方法,说一说,问题:如图,AB是O的一条弦, 直径CDAB, 垂足为E.你能发现图中有那些相等的线段和劣弧? 为什么?,线段: AE=BE,O,A,B,D,E,C,垂径定理,垂直于弦的直径平分弦,并且平分弦所对的两条弧., CD是直径,CDAB,, AE=BE,推导格式:,温馨提示:垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.,归纳总结,想一想:下列图形是否具备垂径定理的条件?如果不是,请说明为什么?,是,不是,因为没有垂直,是,不是,因为CD没有过圆心,垂径定理的几个基本图形:,归纳总结,如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换一条,命题是真命题吗? 过圆心 ;垂直于弦; 平分弦; 平分弦所对的优弧 ; 平分弦所对的劣弧. 上述五个条件中的任何两个条件都可以推出其他三个结论吗?,思考探索,举例证明其中一种组合方法 已知: 求证:, CD是直径, CDAB,垂足为E, AE=BE,证明猜想,如图,AB是O的一条弦,作直径CD,使AE=BE. (1)CDAB吗?为什么? (2),O,A,B,C,D,E,AC与BC相等吗? AD与BD相等吗?为什么?,(1)连接AO,BO,则AO=BO,又AE=BE,AOEBOE(SSS),,AEO=BEO=90,,CDAB.,证明举例,思考:“不是直径”这个条件能去掉吗?如果不能,请举出反例.,平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.,垂径定理的推论,特别说明: 圆的两条直径是互相平分的.,归纳总结,例1 如图,OEAB于E,若O的半径为10cm, OE=6cm,则AB= cm.,解析:连接OA, OEAB,, AB=2AE=16cm.,16,一,典例精析,例2 如图, O的弦AB8cm ,直径CEAB于D,DC2cm,求半径OC的长.,解:连接OA, CEAB于D,,设OC=xcm,则OD=x-2,根据勾股定理,得,解得 x=5,,即半径OC的长为5cm.,x2=42+(x-2)2,,证明:作直径MNAB. ABCD,MNCD. 则AMBM,CMDM (垂直平分弦的直径平分弦所对的弧) AMCMBMDM ACBD,解决有关弦的问题,经常是过圆心作弦的弦心距,或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件.,归纳总结,试一试:根据刚刚所学,你能利用垂径定理求出引入中赵州桥主桥拱半径的问题吗?,解:如图,用AB表示主桥拱,设AB所在圆的圆心为O,半径为R.,经过圆心O作弦AB的垂线OC垂足为D,与弧AB交于点C,则D是AB的中点,C是弧AB的中点,CD就是拱高., AB=37m,CD=7.23m.,解得R27.3(m).,即主桥拱半径约为27.3m.,=18.52+(R-7.23)2, AD= AB=18.5m, OD=OC-CD=R-7.23.,练一练:如图a、b,一弓形弦长为 cm,弓形所在的圆的半径为7cm,则弓形的高为_.,2cm或12cm,在圆中有关弦长a,半径r, 弦心距d(圆心到弦的距离),弓形高h的计算题时,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.,涉及垂径定理时辅助线的添加方法,弦a,弦心距d,弓形高h,半径r之间有以下关系:,弓形中重要数量关系,d+h=r,归纳总结,视频:垂径定理微课讲解,1.已知O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径为 .,5cm,2.O的直径AB=20cm, BAC=30则弦AC= .,3.(分类讨论题)已知O的半径为10cm,弦MNEF,且MN=12cm,EF=16cm,则弦MN和EF之间的距离为 .,14cm或2cm,当堂练习,4.如图,在O中,AB、AC为互相垂直且相等的两条弦,ODAB于D,OEAC于E,求证四边形ADOE是正方形,证明:,四边形ADOE为矩形,,又AC=AB, AE=AD, 四边形ADOE为正方形.,5.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点。你认为AC和BD有什么关系?为什么?,证明:过O作OEAB,垂足为E, 则AEBE,CEDE. AECEBEDE 即 ACBD.,注意:解决有关弦的问题,常过圆心作弦的弦心距,或作垂直于弦的直径,它是一种常用辅助线的添法,6.如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OECD,垂足为F,EF=90m.求这段弯路的半径.,解:连接OC.,设这段弯路的半径为Rm,则OF=(R-90)m.,根据勾股定理,得,解得R=545.,这段弯路的半径约为545m.,拓展提升: 如图,O的直径为10,弦AB=8,P为AB上的一个动点,那么OP长的取值范围 .,3cmOP5cm,垂径定理,内容,推论,辅助线,一条直线满足:过圆心;垂直于弦; 平分弦(不是直径); 平分弦所对的优弧;平分弦所对的劣弧.满足其中两个条件就可以推出其它三个结论(“知二推三”),垂直于弦的直径平分弦, 并且平分弦所对的两条弧,两条辅助线: 连半径,作弦心距,构造Rt利用勾股定理计算或建立方程.,基本图形及变式图形,课堂小结,