2022年数学高二数学导数的概念的说课稿 .pdf
高二数学导数的概念的说课稿一、教材分析导数的概念是高中新教材人教A版选修 2-2 第一章 1.1.2的内容 , 是在学生学习了物理的平均速度和瞬时速度的背景下,以及前节课所学的平均变化率基础上,阐述了平均变化率和瞬时变化率的关系,从实例出发得到导数的概念,为以后更好地研究导数的几何意义和导数的应用奠定基础。新教材在这个问题的处理上有很大变化,它与旧教材的区别是从平均变化率入手,用形象直观的“逼近”方法定义导数。问题 1 气球平均膨胀率- 瞬时膨胀率问题 2 高台跳水的平均速度- 瞬时速度- 根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点二、 教学目标1、 知识与技能:通过大量的实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数。2、 过程与方法:通过动手计算培养学生观察、分析、比较和归纳能力通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法3、 情感、态度与价值观:通过运动的观点体会导数的内涵,使学生掌握导数的概念不再困难,从而激发学生学习数学的兴趣. 三、 重点、难点重点: 导数概念的形成,导数内涵的理解难点: 在平均变化率的基础上去探求瞬时变化率,深刻理解导数的内涵通过逼近的方法,引导学生观察来突破难点四、教学设想(具体如下表)教学环节教学内容师生互动设计思路函数的平均变化率fx函数的瞬时变化率0limxfx(即导数)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 6 页创设情景、引入新课幻灯片回顾上节课留下的思考题:在高台跳水运动中,运动员相对水面的高度 h (单位: m )与起跳后的时间t(单位:s)存在函数关系h(t )=4.9t 26.5t10. 计算运动员在65049t这段时间里的平均速度,并思考下面的问题:(1)运动员在这段时间里是静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗?首先回顾上节课留下的思考题:在学生相互讨论,交流结果的基础上,提出:大家得到运动员在这段时 间 内 的 平 均 速 度 为“0” ,但我们知道运动员在这段时间内并没有“静止”。 为什么会产生这样的情况呢?引起学生的好奇,意识到平均速度只能粗略地描述物体在某段时间内的运动状态,为了能更精确地刻画物体运动, 我们有必要研究某个时刻的速度即瞬时速度。使学生带着问题走进课堂,激发学生求知欲初步探索、展示内涵根据学生的认知水平, 概念的形成分了两个层次:结合跳水问题, 明确瞬时速度的定义问题一: 请大家思考如何求运动员的瞬时速度,如t=2 时刻的瞬时速度?提出问题一,组织学生讨论,引导他们自然地想到选取一个具体时刻如 t=2 ,研究它附近的平均速度变化情况来寻找到问题的思路,使抽象问题具体化理解导数的内涵是本节课的教学重难点, 通过层层设疑,把学生推向问题的中心,让学生动手操作,直观感受来突出重点、突破难点问题二:请大家继续思考,当t 取不同值 时 , 尝 试 计 算(2)(2)hthtv的值?t vt v-0.1 0.1 -0.01 0.01 -0.001 0.001 -0.0001 0.0001 -0.00001 0.00001 . . . 学生对概念的认知需要借助大量的直观数据,所以我让学生利用计算器,分组完成问题二,帮助学生体会从平均速度出发,“以已知探求未知”的数学思想方法, 培养学生的动手操作能力精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 6 页问题三:当 t 趋于 0 时,平均速度有怎样的变化趋势?t vt v-0.1 -12.61 0.1 -13.59 -0.01 -13.051 0.01 -13.149 -0.001 -13.0951 0.001 -13.1049 -0.0001 -13009951 0.0001 -13.10049 -0.00001 -13.099951 0.00001 -13.100049 . . . 一方面分组讨论,上台板演,展示计算结果,同时口答: 在 t=2 时刻 ,t 趋于 0 时,平均速度 趋 于 一 个 确 定 的 值-13.1 ,即瞬时速度, 第一次体会逼近思想;另一方面借助动画多渠道地引导学生观察、 分析、比较、归纳,第二次体会逼近思想,为了表述方便 , 数学中用简洁的符号来 表示,即0(2)(2)lim13.1ththt数形结合, 扫清了学生的思维障碍, 更好地突破了教学的重难点, 体验数学的简约美问题四:运动员在某个时刻0t的瞬时速度如何表示呢?引导学生继续思考: 运动员在某个时刻0t的瞬时速度如何表示? 学生意识到将0t代替2,可类比得到000()( )limth tthtt与旧教材相比, 这里不提及极限概念 , 而是通过形象生动的逼近思想来定义0t时刻的瞬时速度, 更符合学生的认知规律, 提高了他们的思维能力 , 体现了特殊到一般的思维方法借助其它实例,抽象导数的概念问题五:气球在体积v0时的瞬时膨胀率如何表示呢?类比之前学习的瞬时速度问题 , 引导学生得到瞬 时 膨 胀 率 的 表 示000()( )limvr vvr vv积极的师生互动能帮助学生看到知识点之间的联系,有助于知识的重组和迁移,寻找不同实际背景下的数学共性, 即对于不同实际问题,瞬时变化率富于不同的实际意义精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 6 页问题六: 如果将这两个变化率问题中的函数 用( )f x来 表 示 , 那 么 函 数( )f x在0 xx处的瞬时变化率如何呢?在前面两个问题的铺垫下, 进一步提出, 我们这里研究的函数( )f x在0 xx处 的 瞬 时 变 化率0000()( )limlimxxf xxf xfxx即( )yf x在0 xx处的导数 , 记作0000()( )( )limxf xxf xf xx( 也可记为0 xxy)引导学生舍弃具体问题的实际意义 , 抽象得到导数定义, 由浅入深、由易到难、由特殊到一般, 帮助学生完成了思维的飞跃;同时提及导数产生的时代背景,让学生感受数学文化的熏陶,感受数学来源于生活,又服务于生活。循序渐进、延伸拓展例 1:将原油精炼为汽油、柴油、塑料等不同产品,需要对原油进行冷却和加热。如果在第x h 时候,原油温度 (单位:c)为2( )715(08)f xxxx(1)计算第2h 和第 6h 时,原油温度的瞬时变化率,并说明它的意义。(2)计算第3h 和第 5h 时,原油温度的瞬时变化率,并说明它的意义。步骤:启发学生根据导数定义,再分别求出(2)f和(6)f既然我们得到了第2h 和第 6h 的原油温度的瞬时变化率分别为-3 与 5,大家能说明它的含义吗?大 家是否能用同样方法来解决问题二?师生共同归纳得到,导数即瞬时变化率,可反映物体变化的快慢步步设问,引导学生深入探究导数内涵发展学生的应用意识,是高中数学课程标准所倡导的重要理念之一。 在教学中以具体问题为载体, 加深学生对导数内涵的理解,体验数学在实际生活中的应用精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 6 页变式练习:已知一个物体运动的位移(m )与时间 t (s)满足关系S(t ) -2t2+5t(1)求物体第5 秒和第 6秒的瞬时速度(2)求物体在t 时刻的瞬时速度(3)求物体t 时刻运动的加速度,并判断物体作什么运动?学生独立完成,上台板演,第三次体会逼近思想目的是让学生学会用数学的眼光去看待物理模型,建立各学科之间的联系,更深刻地把握事物变化的规律归纳总结、内化知识1、瞬时速度的概念2、导数的概念3、思想方法:“以已知探求未知” 、逼近、类比、从特殊到一般引导学生进行讨论,相互补充后进行回答,老师评析,并用幻灯片给出让学生自己小结,不仅仅总结知识更重要地是总结数学思想方法。 这是一个重组知识的过程, 是一个多维整合的过程, 是一个高层次的自我认识过程, 这样可帮助学生自行构建知识体系,理清知识脉络, 养成良好的学习习惯作业安排、板书设计(必做)第10 页习题 A组第 2、 3、4 题(选做):思考第11 页习题 B组第 1 题作业是学生信息的反馈,能在作业中发现和弥补教学中的不足,同时注重个体差异,因材施教附后板书设计清楚整洁, 便于突出知识目标五、学法与教法学法与教学用具学法:( 1)合作学习:引导学生分组讨论,合作交流,共同探讨问题。(如问题2 的处理)(2)自主学习:引导学生通过亲身经历,动口、动脑、动手参与数学活动。(如问题 3 的处理)(3)探究学习:引导学生发挥主观能动性,主动探索新知。(如例题的处理)教学用具:电脑、多媒体、计算器教法: 整堂课围绕“一切为了学生发展”的教学原则,突出 动师生互动、共同探索。导教师指导、循序渐进(1)新课引入提出问题, 激发学生的求知欲(2)理解导数的内涵数形结合,动手计算, 组织学生自主探索,获得导数的定义(3)例题处理始终从问题出发,层层设疑,让他们在探索中自得知识精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 6 页(4)变式练习深化对导数内涵的理解,巩固新知六、评价分析这堂课由平均速度到瞬时速度再到导数,展示了一个完整的数学探究过程。提出问题、计算观察、发现规律、给出定义,让学生经历了知识再发现的过程,促进了个性化学习。从旧教材上看,导数概念学习的起点是极限,即从数列的极限,到函数的极限,再到导数。这种概念建立方式具有严密的逻辑性和系统性,但学生很难理解极限的形式化定义,因此也影响了对导数本质的理解。新教材不介绍极限的形式化定义及相关知识,而是用直观形象的逼近方法定义导数。通过列表计算、直观地把握函数变化趋势(蕴涵着极限的描述性定义),学生容易理解;这样定义导数的优点:1避免学生认知水平和知识学习间的矛盾;2将更多精力放在导数本质的理解上;3学生对逼近思想有了丰富的直观基础和一定的理解,有利于在大学的初级阶段学习严格的极限定义. (附)板书设计1.1.2导数的概念一、回顾上节课的思考题二、瞬时速度的概念三、导数的概念四、归纳小结五、作业安排电脑投影屏幕列表例1变式练习精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 6 页