欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    最新一阶常微分方程解法总结.doc

    • 资源ID:33821414       资源大小:607.50KB        全文页数:10页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    最新一阶常微分方程解法总结.doc

    精品资料一阶常微分方程解法总结.第 一 章 一阶微分方程的解法的小结、可分离变量的方程:、形如 当时,得到,两边积分即可得到结果;当时,则也是方程的解。例1.1、解:当时,有,两边积分得到所以显然是原方程的解;综上所述,原方程的解为、形如当时,可有,两边积分可得结果;当时,为原方程的解,当时,为原方程的解。例1.2、解:当时,有两边积分得到,所以有;当时,也是原方程的解;综上所述,原方程的解为。可化为变量可分离方程的方程:、形如解法:令,则,代入得到为变量可分离方程,得到再把u代入得到。、形如解法:令,则,代入得到为变量可分离方程,得到再把u代入得到。、形如解法:、,转化为,下同;、,的解为,令得到,下同;还有几类: 以上都可以化为变量可分离方程。例2.1、解:令,则,代入得到,有所以,把u代入得到。例2.2、解:由得到,令,有,代入得到,令,有,代入得到,化简得到,有,所以有,故代入得到(3)、一阶线性微分方程:一般形式:标准形式:解法:1、直接带公式:2、积分因子法:,3、IVP:,例3、解:化简方程为:,则代入公式得到所以,(4)、恰当方程:形如解法:先判断是否是恰当方程:如果有恒成立,那么原方程是个恰当方程,找出一个 ,有;例4、解:由题意得到,由得到,原方程是一个恰当方程;下面求一个由得,两边对y求偏导得到,得到,有,故,由,得到(5)、积分因子法: 方程,那么称是原方程的积分因子;积分因子不唯一。当且仅当,原方程有只与x有关的积分因子,且为,两边同乘以,化为恰当方程,下同(4)。当且仅当,原方程有只与y有关的积分因子,且为,两边同乘以,化为恰当方程,下同(4)。例5.1、解:由得,且有,有,原方程两边同乘,得到化为,得到解为例5.2、解:由题意得到,有有,有,原方程两边同乘,得到,得到原方程的解为:(6)、贝努力方程:形如,解法:令,有,代入得到,下同(3)例6、解:令,有,代入得到,则,有,把u代入得到.(7)、一阶隐式微分方程:一般形式:,解不出的称为一阶隐式微分方程。下面介绍四种类型: 、形如,一般解法:令,代入得到,两边对x求导得到,这是关于x,p的一阶线性微分方程,仿照(3),1、得出解为,那么原方程的通解为2、得出解为,那么原方程的通解为3、得出解为,那么原方程的通解为、形如一般解法:令,代入有,两边对y求导,得到,此方程是一阶微分方程,可以按照以上(1)(5)求出通解,那么原方程的通解为、形如一般解法:设,两边积分得到,于是有原方程的通解为、形如一般解法:设,由关系式得,有,两边积分得到,于是有 例7.1 解:令,得到,两边对y求导,得到,有,得到,于是通解为例7.2 解:令,得到,两边对x求导,得到,有,两边积分得到,于是通解为例7.3 解:设有,所以于是通解为例7.4 解:设有,所以于是通解为(8)、里卡蒂方程:一般形式:一般解法:先找出一个特解,那么令,有,代入原方程得到 ,化简得到 ,为一阶线性微分方程,解出那么原方程的通解为例8 解:我们可以找到一个特解,验证:,代入满足原方程。令,代入有,化简得到,所以有所以原方程的解为 或

    注意事项

    本文(最新一阶常微分方程解法总结.doc)为本站会员(1595****071)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开