最新2.3.2双曲线的简单几何性质教学设计.doc
-
资源ID:33828298
资源大小:378KB
全文页数:8页
- 资源格式: DOC
下载积分:15金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
最新2.3.2双曲线的简单几何性质教学设计.doc
精品资料2.3.2双曲线的简单几何性质教学设计.双曲线的简单几何性质一、学习目标知识目标: 了解双曲线的简单几何性质,如范围、对称性、顶点、渐近线、离心率。 能力目标: 通过观察、类比、转化、概括等探究,提高学生运用方程研究双曲线的性质的能力. 情感目标: 使学生在合作探究活动中体验成功, 激发学习热情,感受事物之间处处存在联系.二、学习重点、难点1. 教学重点:双曲线的范围、对称性、顶点、渐近线、离心率等几何性质;2. 教学难点:双曲线的渐近线.三、学习过程:(一)复习式导入: 在椭圆部分,我们曾经从图形和标准方程两个角度来研究椭圆的几何性质。那么,你认为应该研究双曲线的哪些性质呢?范围、对称性、顶点、离心率等.这就是我们今天要共同学习的内容:双曲线的简单几何性质(二)新课:我们先来研究一下焦点坐标在x轴上的双曲线的简单几何性质。1双曲线的简单几何性质(1)范围 从图形看,的取值范围是什么?师生: 从标准方程能否得出这个结论呢? 的范围呢?(2)对称性从图形看,双曲线关于什么对称性?生:关于x轴、y轴和原点都是对称的那么,类比椭圆几何性质的推导,从标准方程如何得出这个结论呢?提示:用代替原方程中的,若方程不变,则该曲线关于x轴对称。同理,若用代替原方程中的,若方程不变,则该曲线关于y轴对称。若用分别代替原方程中的,若方程不变,则该曲线关于原点对称。所以,双曲线是关于x轴、y轴和原点都是对称的。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。(3)顶点椭圆的顶点有几个?(4个)它是如何定义的?(椭圆与对称轴的交点)类比椭圆顶点的定义,我们把双曲线与对称轴的交点,叫做双曲线的顶点。由图形可以看到,双曲线的顶点有几个?顶点坐标是? 虽然对比椭圆,双曲线只有两个顶点,但我们仍然把标在图形上。为了后面定义渐近线表述的方便,定义如图矩形为双曲线的特征矩形。椭圆中有长轴和短轴的概念,并且长轴比短轴长。双曲线中也有类似的定义。如图,线段A1A2叫做双曲线的实轴,它的长为2a,a叫做半实轴长;线段B1B2叫做双曲线的虚轴,它的长为2b,b叫做双曲线的半虚轴长.我们知道,双曲线定义中a和b的大小关系是不确定的。但是它们之间存在一种特殊的关系:a=b。此时实轴2a和虚轴2b也是相等的。实轴与虚轴等长的双曲线叫等轴双曲线.等轴双曲线的方程为(4)渐近线图2:标准位置下的双曲线的渐近线应该是什么呢?通过操作确认,发现渐近线是双曲线特征矩形的对角线,其方程是定义:特征矩形的两条对角线叫做双曲线的渐近线。 双曲线的渐近线方程是即 注:通过变形,对比双曲线方程与渐近线方程,可以发现:将双曲线方程中的1改为0后得到新的方程,它的解就是两条渐近线方程。(此处提供了一种求双曲线的渐近线方程的方法,避免记忆公式) 等轴双曲线的渐近线方程是 焦点在y轴上的双曲线的渐近线 即渐近线的作用:利用渐近线可以较准确的画出双曲线的草图。(简述作图过程) (5)离心率类比椭圆,我们把双曲线的焦距与实轴长的比,叫做双曲线的离心率。 椭圆离心率的范围是什么?()。它对椭圆的形状有何影响?(影响椭圆的扁平程度,e越大椭圆越扁)。那么,双曲线的离心率的范围是什么呢? 由等式,可得:,不难发现:e越小(越接近于1),就越接近于0,双曲线开口越小;e越大,就越大,双曲线开口越大。所以,双曲线的离心率反映的是双曲线的开口大小。通过对这些性质的探究,就可以更好的理解双曲线图形与这些基本量之间的关系,更加准确的作出双曲线的图形。 e对双曲线的形状有何影响呢?得出结论:e是表示双曲线开口大小的一个量,e越大开口越大。(三)例题解析例1求双曲线的半实轴长和半虚轴长、焦点坐标、离心率、渐近线方程.解:把方程化为标准方程.由此可知,半实轴长,半虚轴长. 所以,焦点坐标是离心率,渐近线方程是注:此问题由学生口答。练习:求双曲线的渐近线方程变式:已知双曲线的渐近线方程为,且双曲线过点,求此双曲线的标准方程解:设所求双曲线的标准方程可设为,由题意得 解得 所以,所求双曲线的标准方程为例2 .如图,设与定点的距离和它到直线:的距离的比是常数,求点的轨迹方程分析:若设点,则,到直线:的距离,则容易得点的轨迹方程例3 .过双曲线的右焦点倾斜角为的直线交双曲线于A,B两点求AB解:直线AB: 由 消去y,得 解得 代入直线AB,得 所以,(四)课堂小结通过本节课的学习,你有哪些收获?1 双曲线的简单几何性质2 双曲线与渐近线(1)双曲线的渐近线方程是即(2)渐近线是的双曲线方程可设为(五)作业布置 课本登封市20142015学年课堂教学达标评优活动参评教学设计双曲线的简单几何性质 单 位:登封一中 学 科:数 学 主讲人:张 凤 娟双曲线的简单几何性质教学反思本节内容是人教A版选修2-1第二章第三节双曲线的第二课时,本节课是在学习了“椭圆的几何性质和双曲线的定义、方程”后进行的,课程标准要求了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质.与已学的椭圆和后续的抛物线比较,本节课的要求相对较低。但是本节课渗透的思想方法是相当重要的。一方面,本节课是利用双曲线的方程研究其几何性质。这是解析几何研究的两个主要问题之一,通过本节课的学习有利于进一步深化坐标法和数形结合的思想;另一方面,通过类比椭圆学习双曲线的几何性质,有利于培养学生科学的思维方法。 平面解析几何研究的主要问题之一就是:通过方程,研究平面曲线的性质。课程标准明确要求:学生要掌握圆锥曲线的性质,初步掌握根据曲线的方程,研究曲线的几何性质的方法和步骤。根据这些教学原则和要求,以及学生的学习现状,我制定了本节课的教学目标。(1)知识目标:使学生能运用双曲线的标准方程讨论双曲线的范围、对称性、顶点、离心率、渐近线等几何性质;掌握双曲线标准方程中的几何意义,理解双曲线的渐近线的概念;能运用双曲线的几何性质解决双曲线的一些基本问题。(2) 能力目标:在与椭圆的性质的类比中获得双曲线的性质,培养学生的观察能力,想象能力,数形结合能力,分析、归纳能力和逻辑推理能力,以及类比的学习方法;使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的概念的理解。(3) 情感目标:通过本课时对双曲线几何性质的研究、探讨,让不同层次的学生都能切实体验成功的喜悦,感受数学的美和魅力,激发创造的激情,培养审美的情趣。根据本节的教学内容和课程标准以及高考的要求,结合学生现有的实际水平和认知能力,我把对双曲线的几何性质的理解和简单应用作为本节课的重点。渐近线是双曲线的特有性质,也是教学的难点,但课程标准要求相对较低,不要求严格证明,为了突破难点,通过问题引导学生从已有认知水平出发,来发现双曲线的渐近线,然后充分利用多媒体展示,帮助学生进一步直观理解渐近线“渐近”的含义 。 这节课内容是通过双曲线方程推导、研究双曲线的性质,本节内容类似于“椭圆的简单的几何性质”,教学通过类比,让学生自己进行探究,得到类似的结论。在教学中,凡是难度不大,经过学习学生自己能解决的问题,应该让学生自己解决,这样有利于调动学生学习的积极性,激发他们的学习积极性,同时也有利于学习建立信心,使他们的主动性得到充分发挥,从中提高学生的思维能力和解决问题的能力。渐近线是双曲线特有的性质,我们常利用它作出双曲线的草图,而学生对渐近线的发现、理解和掌握有一定的困难。因此,在教学过程中着重培养学生的创造性思维,通过诱导、分析,从已有知识出发,启迪思维,调动学生自身探索的内驱力,进一步清晰概念(或图形)特征,培养思维的深刻性。例题的选备,可将此题作一题多变(变条件,变结论),开拓其解题思路,使他们在做题中总结规律、发展思维、提高知识的应用能力和发现问题、解决问题能力。